Lourdes Infantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924680/publications.pdf

Version: 2024-02-01

70 papers

2,614 citations

331259 21 h-index 50 g-index

83 all docs 83 docs citations

83 times ranked 2628 citing authors

#	Article	IF	CITATIONS
1	Water clusters in organic molecular crystals. CrystEngComm, 2002, 4, 454.	1.3	593
2	Extended motifs from water and chemical functional groups in organic molecular crystals. CrystEngComm, 2003, 5, 480.	1.3	430
3	Water Oligomers in Crystal Hydrates—What's News and What Isn't?. Angewandte Chemie - International Edition, 2006, 45, 32-36.	7.2	265
4	Organic crystal hydrates: what are the important factors for formation. CrystEngComm, 2007, 9, 65-71.	1.3	175
5	Synthesis, Photophysical Properties, and Laser Behavior of 3-Amino and 3-Acetamido BODIPY Dyes. Organic Letters, 2007, 9, 4183-4186.	2.4	60
6	Structural Changes in the BODIPY Dye PM567 Enhancing the Laser Action in Liquid and Solid Media. Advanced Functional Materials, 2007, 17, 3088-3098.	7.8	56
7	New synthetic approaches to condensed pyridazinones: alkylpyridazinyl carbonitriles as building blocks for the synthesis of condensed pyridazinones. Tetrahedron, 1995, 51, 12745-12762.	1.0	55
8	Structure of Ligand-Bound Intermediates of Crop ABA Receptors HighlightsÂPP2C as Necessary ABA Co-receptor. Molecular Plant, 2017, 10, 1250-1253.	3.9	49
9	Structure and tautomerism of 3(5)-amino-5(3)-arylpyrazoles in the solid state and in solution: An X-ray and NMR study. Tetrahedron, 1997, 53, 10783-10802.	1.0	45
10	Silverâ€Catalyzed Cyclization of <i>N</i> â€(Propâ€2â€ynâ€1â€yl)pyridinâ€2â€amines. European Journal of Orga Chemistry, 2013, 2013, 35-39.	nic 1.2	44
11	Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E999-E1008.	3.3	40
12	Hydrogen bond competition between chemical groups: new methodology and the Cambridge Structural Database. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.4	39
13	A practical two-step synthesis of imidazo [1,2-a] pyridines from N-(prop-2-yn-1-yl) pyridin-2-amines. Chemical Communications, 2011, 47, 5043.	2.2	39
14	The probable number of hydrogen-bonded contacts for chemical groups in organic crystal structuresElectronic supplementary information (ESI) available: details of the calculated properties of atoms and groups in Tables 1 and 2. See http://www.rsc.org/suppdata/cc/b4/b402939a/. Chemical Communications, 2004, , 1166.	2.2	38
15	Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects. Chemistry - A European Journal, 2010, 16, 14094-14105.	1.7	38
16	New Quinolylnitrones for Stroke Therapy: Antioxidant and Neuroprotective (<i>Z</i>)- <i>N</i> - <i>tert</i> -Butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine Oxide as a New Lead-Compound for Ischemic Stroke Treatment. Journal of Medicinal Chemistry, 2019, 62, 2184-2201.	2.9	35
17	Prediction of H-Bonding Motifs for Pyrazoles and Oximes Using the Cambridge Structural Database. Structural Chemistry, 2004, 15, 173-184.	1.0	33
18	Quaternary $\hat{l}_{\pm},\hat{l}_{\pm}$ -2-Oxoazepane \hat{l}_{\pm} -Amino Acids: Synthesis from Ornithine-Derived \hat{l}_{\pm} -Lactams and Incorporation into Model Dipeptides. Journal of Organic Chemistry, 2011, 76, 6592-6603.	1.7	33

#	Article	IF	CITATIONS
19	Optical resolution of 1,3-dimethyl-5-phenyl-î"2-pyrazoline by diastereoisomeric complex formation with an optically active host compound: X-ray and molecular structure of the complex. Journal of the Chemical Society Chemical Communications, 1995, , 1453-1454.	2.0	21
20	Packing Modes in Eight 3-Ethoxycarbonylpyrazole Derivatives. Influence of the Substituents on the Crystal Structure and Annular Tautomerism. Heterocycles, 1999, 50, 227.	0.4	21
21	Structure of a 4-Nitroso-5-aminopyrazole and Its Salts:Â Tautomerism, Protonation, andE/ZIsomerism. Journal of Organic Chemistry, 2003, 68, 8831-8837.	1.7	21
22	Environment-Sensitive Probes for Illuminating Amyloid Aggregation <i>In Vitro</i> and in Zebrafish. ACS Sensors, 2020, 5, 2792-2799.	4.0	21
23	The annular tautomerism of 4(5)-phenylimidazole. Perkin Transactions II RSC, 2002, , 564-568.	1.1	20
24	Smart lanthanide antennas for sensing water. Chemical Communications, 2020, 56, 5484-5487.	2.2	20
25	Further Evidence for 2-Alkyl-2-carboxyazetidines as Î ³ -Turn Inducers. Journal of Organic Chemistry, 2009, 74, 8203-8211.	1.7	19
26	2,4,6-Tris(azol-1-yl)-1,3,5-triazines: A New Class of Multidentate Ligands. Heterocycles, 2001, 55, 905.	0.4	18
27	Efficient Light Harvesters Based on the 10-(1,3-Dithiol-2-ylidene)anthracene Core. Organic Letters, 2013, 15, 4166-4169.	2.4	18
28	Sulfoxide-Directed Enantioselective Synthesis of Functionalized Tetrahydropyridines. Organic Letters, 2013, 15, 4936-4939.	2.4	18
29	Tautomerism of NH-pyrazolinones in the solid state: the case of 3(5)-ethoxycarbonyl-5(3)-hydroxypyrazole. Journal of Molecular Structure, 1998, 447, 71-79.	1.8	17
30	Substituent Effects on Enthalpies of Formation of Nitrogen Heterocycles:  2-Substituted Benzimidazoles and Related Compounds. Journal of Physical Chemistry A, 2006, 110, 2535-2544.	1.1	17
31	Aminopyrazoles and their conjugated acids. An Xâ€ray study of 3,5â€dimethylâ€4â€aminopyrazole and the Picrate of 3(5)â€aminopyrazole. Journal of Heterocyclic Chemistry, 1999, 36, 595-600.	1.4	16
32	1,2,4,5-Tetrazines vs. Carboxylic Acid Dimers: Molecular Chemistry vs. Supramolecular Chemistry. Helvetica Chimica Acta, 2003, 86, 1205-1221.	1.0	16
33	Modification of pancreatic lipase properties by directed molecular evolution. Protein Engineering, Design and Selection, 2010, 23, 365-373.	1.0	14
34	Mixed crystals of pyrazoles and benzoic acids. Part 1. The molecular structure of 3,5-dimethylpyrazole–2,4,6-trimethylbeflzoic acid co-crystals. Journal of the Chemical Society Perkin Transactions II, 1996, , 349-353.	0.9	13
35	Neural Network Prediction of Secondary Structure in Crystals:  Hydrogen-Bond Systems in Pyrazole Derivatives. Crystal Growth and Design, 2005, 5, 191-200.	1.4	13
36	Azepane Quaternary Amino Acids As Effective Inducers of 3 ₁₀ Helix Conformations. Journal of Organic Chemistry, 2012, 77, 9833-9839.	1.7	13

#	Article	IF	CITATIONS
37	Synthesis of Enantiopure 3-Hydroxypiperidines from Sulfinyl Dienyl Amines by Diastereoselective Intramolecular Cyclization and [2,3]-Sigmatropic Rearrangement. Journal of Organic Chemistry, 2015, 80, 7674-7692.	1.7	13
38	The Unusual Transformation of an Aromatic 1H-Imidazole into a Non-Aromatic 2H-Imidazole. Structural Chemistry, 2005, 16, 485-490.	1.0	12
39	The Structure of Aminoazoles and Its Relationship with Aromaticity. Crystal and Molecular Structure of Two Polymorphic Forms of 4-Aminopyrazole. Heterocycles, 1998, 49, 157.	0.4	12
40	Fluorescence mechanism switching from ICT to PET by substituent chemical manipulation: Macrophage cytoplasm imaging probes. Dyes and Pigments, 2020, 175, 108172.	2.0	11
41	Solid-state structure of NH-pyrazolium hydrochlorides and hydrobromides by X-ray crystallography and CPMAS NMR. Journal of Molecular Structure, 1997, 415, 81-92.	1.8	10
42	3(5),4-Dimethyl- and 3,4,5-trimethylpyrazole at 200â€K. X-ray crystallography and quantum-chemical analysis. Acta Crystallographica Section B: Structural Science, 1999, 55, 441-447.	1.8	10
43	The Structure of N1-Hydroxylophine N3-Oxide (=1-Hydroxy-2,4,5- triphenyl-1H-imidazole 3-Oxide) in the Solid State. Helvetica Chimica Acta, 2003, 86, 1026-1039.	1.0	10
44	Deciphering the Inhibition of the Neuronal Calcium Sensor 1 and the Guanine Exchange Factor Ric8a with a Small Phenothiazine Molecule for the Rational Generation of Therapeutic Synapse Function Regulators. Journal of Medicinal Chemistry, 2018, 61, 5910-5921.	2.9	10
45	Optimization and comparison of statistical tools for the prediction of multicomponent forms of a molecule: the antiretroviral nevirapine as a case study. CrystEngComm, 2020, 22, 7460-7474.	1.3	10
46	Silver Triflateâ€Catalyzed Cyclization of 2â€Aminoâ€6â€propargyl―amineazines Leading to Iminoimidazoazines. Advanced Synthesis and Catalysis, 2014, 356, 1235-1241.	2.1	9
47	New Multicomponent Forms of the Antiretroviral Nevirapine with Improved Dissolution Performance. Crystal Growth and Design, 2020, 20, 688-698.	1.4	9
48	The structure and flexibility analysis of the <i>Arabidopsis</i> synaptotagmin 1 reveal the basis of its regulation at membrane contact sites. Life Science Alliance, 2021, 4, e202101152.	1.3	9
49	Synthesis of (E)-diethyl $6,6\hat{a}\in^2$ -(diazene-1,2-diyl)bis(5-cyano-2-methyl-4-phenylnicotinates), a new type of 2,2 $\hat{a}\in^2$ -azopyridine dyes. Tetrahedron Letters, 2010, 51, 6278-6281.	0.7	8
50	Gas-phase (ion cyclotron resonance spectrometric) and solid-state (crystallographic) studies of highly substituted pyrazoles. Journal of Physical Organic Chemistry, 1996, 9, 79-86.	0.9	7
51	Host-guest chemistry. The structure and proton disorder of the three-component crystal formed by 3(5)-methyl-4-nitropyrazole, (R, R)-(?)-trans-4,5-bis (hydroxydiphenylmethyl)-2,2-dimethyl-1,3-dioxolane and toluene., 1996, 9, 611-618.		6
52	The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism. Journal of Molecular Biology, 2012, 423, 503-514.	2.0	6
53	The structure of four thallium tris(1H-pyrazol-1-yl)hydroborates in the solid state by X-ray crystallography and in solution by NMR and DFT-GIAO calculations. Inorganica Chimica Acta, 2018, 483, 402-410.	1.2	6
54	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	1.6	6

#	Article	IF	CITATIONS
55	An Example of Polynomial Expansion: The Reaction of 3(5)-Methyl-1H-Pyrazole with Chloroform and Characterization of the Four Isomers. Molecules, 2019, 24, 568.	1.7	6
56	Highly Functionalized 1,2–Diamino Compounds through Reductive Amination of Amino Acid-Derived β–Keto Esters. PLoS ONE, 2013, 8, e53231.	1.1	5
57	The structures of two scorpionates: thallium tetrakis(3-phenyl-1H-pyrazol-1-yl)borate and potassium tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borate. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 819-825.	0.2	4
58	Classification of hydrogen-bond motives in crystals of NH-pyrazoles: a mixed empirical and theoretical approach. Arkivoc, 2006, 2006, 15-30.	0.3	4
59	Knowledge-based approaches to crystal design. CrystEngComm, 2006, , .	1.3	3
60	The Structure and Dynamic Properties of 1H-Pyrazole-4-Carboxylic Acids in the Solid State. Zeitschrift Fur Physikalische Chemie, 2013, 227, 841-856.	1.4	3
61	Experimental and Theoretical Studies on the Rearrangement of 2â€Oxoazepane α,αâ€Amino Acids into 2′â€Oxopiperidine β ^{2,3,3} â€Amino Acids: An Example of Intramolecular Catalysis. Chemistry - A European Journal, 2015, 21, 2489-2500.	1.7	3
62	The molecular structure of 1,3-dimethyl-4-phenyl-1H-pyrazole-5-carboxylic acid. Arkivoc, 2008, 2008, 74-84.	0.3	3
63	The reaction of 2-amino-4 \$\$H\$\$ H -pyrans with \$\$N\$\$ N -bromosuccinimide. Molecular Diversity, 2015, 19, 103-122.	2.1	2
64	A structural study of new tetrakis(1H-pyrazol-1-yl)methanes. Tetrahedron, 2019, 75, 130690.	1.0	2
65	Structure-Based Modulation of the Ligand Sensitivity of a Tomato Dimeric Abscisic Acid Receptor Through a Glu to Asp Mutation in the Latch Loop. Frontiers in Plant Science, $0,13,.$	1.7	2
66	Prediction of H-Bonding Motifs for Pyrazoles and Oximes Using the Cambridge Structural Database. , 2015, , 269-280.		1
67	Water clusters in organic molecular crystals in the CSD. Acta Crystallographica Section A: Foundations and Advances, 2002, 58, c330-c330.	0.3	0
68	CSDContact: a database of hydrogen-bond contacts for chemical groups. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s95-s95.	0.3	0
69	Hydrogen bond capacity of organic functional groups: a CSD derived database. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c482-c482.	0.3	0
70	An orientation on solving supramolecular compounds by vector search. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C73-C73.	0.3	0