
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9246320/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Accessing European Strong-Motion Data: An Update on ORFEUS Coordinated Services. Seismological<br>Research Letters, 2021, 92, 1642-1658.                                                                                  | 0.8 | 12        |
| 2  | Simulation of non-stationary stochastic ground motions based on recent Italian earthquakes.<br>Bulletin of Earthquake Engineering, 2021, 19, 3287-3315.                                                                   | 2.3 | 11        |
| 3  | Preface to the Focus Section on European Seismic Networks and Associated Services and Products.<br>Seismological Research Letters, 2021, 92, 1483-1490.                                                                   | 0.8 | 4         |
| 4  | A GIS procedure for the topographic classification of Italy, according to the seismic code provisions.<br>Soil Dynamics and Earthquake Engineering, 2021, 148, 106848.                                                    | 1.9 | 6         |
| 5  | Site response analyses for complex geological and morphological conditions: relevant case-histories<br>from 3rd level seismic microzonation in Central Italy. Bulletin of Earthquake Engineering, 2020, 18,<br>5741-5777. | 2.3 | 26        |
| 6  | A ground motion model for volcanic areas in Italy. Bulletin of Earthquake Engineering, 2020, 18, 57-76.                                                                                                                   | 2.3 | 14        |
| 7  | Seismological analyses of the seismic microzonation of 138 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bulletin of Earthquake Engineering, 2020, 18, 5553-5593.                            | 2.3 | 29        |
| 8  | 2016–2017 Central Italy seismic sequence: strong-motion data analysis and design earthquake selection<br>for seismic microzonation purposes. Bulletin of Earthquake Engineering, 2020, 18, 5533-5551.                     | 2.3 | 20        |
| 9  | The New ShakeMap in Italy: Progress and Advances in the Last 10 Yr. Seismological Research Letters, 2020, 91, 317-333.                                                                                                    | 0.8 | 54        |
| 10 | Analysis of Near-Source Ground Motion from the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1495-1505.                                                               | 1.1 | 16        |
| 11 | Ground motion models for the new seismic hazard model of Italy (MPS19): selection for active<br>shallow crustal regions and subduction zones. Bulletin of Earthquake Engineering, 2020, 18, 3487-3516.                    | 2.3 | 24        |
| 12 | Site effects observed in the Norcia intermountain basin (Central Italy) exploiting a 20-year monitoring.<br>Bulletin of Earthquake Engineering, 2019, 17, 97-118.                                                         | 2.3 | 13        |
| 13 | Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies. Scientific Data, 2019, 6, 182.                                                                                 | 2.4 | 17        |
| 14 | A Revised Groundâ€Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bulletin of the<br>Seismological Society of America, 2019, 109, 525-540.                                                              | 1.1 | 68        |
| 15 | Fling Effects from Nearâ€Source Strongâ€Motion Records: Insights from the 2016 MwÂ6.5 Norcia, Central<br>Italy, Earthquake. Seismological Research Letters, 2019, 90, 659-671.                                            | 0.8 | 18        |
| 16 | Spatial Correlation Model of Systematic Site and Path Effects for Groundâ€Motion Fields in Northern<br>Italy. Bulletin of the Seismological Society of America, 2019, 109, 1419-1434.                                     | 1.1 | 21        |
| 17 | The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics.<br>Bulletin of Earthquake Engineering, 2019, 17, 561-582.                                                            | 2.3 | 63        |
| 18 | The pan-European engineering strong motion (ESM) flatfile: consistency check via residual analysis.<br>Bulletin of Earthquake Engineering, 2019, 17, 583-602.                                                             | 2.3 | 34        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms. Bulletin of Earthquake Engineering, 2018, 16, 2641-2651.                                               | 2.3 | 28        |
| 20 | Improving seismic hazard approaches for critical infrastructures: a pilot study in the Po Plain.<br>Bulletin of Earthquake Engineering, 2018, 16, 2529-2564.                                               | 2.3 | 7         |
| 21 | Empirical equations for the prediction of PCA and pseudo spectral accelerations using Iranian strong-motion data. Journal of Seismology, 2018, 22, 263-285.                                                | 0.6 | 45        |
| 22 | Site characterization of Italian accelerometric stations. Bulletin of Earthquake Engineering, 2017, 15, 2329-2348.                                                                                         | 2.3 | 26        |
| 23 | Systematic source, path and site effects on ground motion variability: the case study of Northern<br>Italy. Bulletin of Earthquake Engineering, 2017, 15, 4563-4583.                                       | 2.3 | 20        |
| 24 | Fault Segmentation as Constraint to the Occurrence of the Main Shocks of the 2016 Central Italy Seismic Sequence. Tectonics, 2017, 36, 2370-2387.                                                          | 1.3 | 122       |
| 25 | The Central Italy Seismic Sequence between August and December 2016: Analysis of Strongâ€Motion<br>Observations. Seismological Research Letters, 2017, 88, 1219-1231.                                      | 0.8 | 61        |
| 26 | Update of the single-station sigma analysis for the Italian strong-motion stations. Bulletin of<br>Earthquake Engineering, 2017, 15, 2411-2428.                                                            | 2.3 | 14        |
| 27 | SYNTHESIS: a web repository of synthetic waveforms. Bulletin of Earthquake Engineering, 2017, 15, 2483-2496.                                                                                               | 2.3 | 9         |
| 28 | Diminishing highâ€frequency directivity due to a source effect: Empirical evidence from small<br>earthquakes in the Abruzzo region, Italy. Geophysical Research Letters, 2016, 43, 5000-5008.              | 1.5 | 43        |
| 29 | The Engineering Strongâ€Motion Database: A Platform to Access Panâ€European Accelerometric Data.<br>Seismological Research Letters, 2016, 87, 987-997.                                                     | 0.8 | 90        |
| 30 | Groundâ€Motion Prediction Equations for Regionâ€Specific Probabilistic Seismicâ€Hazard Analysis. Bulletin<br>of the Seismological Society of America, 2016, 106, 73-92.                                    | 1.1 | 36        |
| 31 | Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for<br>stress-drop dependence on magnitude and depth. Geophysical Journal International, 2016, 204, 697-718. | 1.0 | 70        |
| 32 | Site effect studies following the 2016 Mw 6.0 Amatrice Earthquake (Italy): the Emersito Task Force activities. Annals of Geophysics, 2016, 59, .                                                           | 0.5 | 12        |
| 33 | Preliminary analysis of the accelerometric recordings of the August 24th, 2016 MW 6.0 Amatrice earthquake. Annals of Geophysics, 2016, 59, .                                                               | 0.5 | 7         |
| 34 | Engineering Characterization of Earthquake Ground Motions. , 2015, , 986-1001.                                                                                                                             |     | 0         |
| 35 | Single-Station Sigma for Italian Strong-Motion Stations. Bulletin of the Seismological Society of<br>America, 2014, 104, 467-483.                                                                          | 1.1 | 31        |
| 36 | Engineering Characterization of Earthquake Ground Motions. , 2014, , 1-18.                                                                                                                                 |     | 3         |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Pan-European ground-motion prediction equations for the average horizontal component of PGA,<br>PGV, and 5Â%-damped PSA at spectral periods up to 3.0Âs using the RESORCE dataset. Bulletin of<br>Earthquake Engineering, 2014, 12, 391-430. | 2.3 | 205       |
| 38 | Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake<br>Engineering, 2014, 12, 311-339.                                                                                                                  | 2.3 | 212       |
| 39 | Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 341-358.       | 2.3 | 71        |
| 40 | Overview on the Strong-Motion Data Recorded during the May-June 2012 Emilia Seismic Sequence.<br>Seismological Research Letters, 2013, 84, 629-644.                                                                                          | 0.8 | 51        |
| 41 | The 2012 May 20 and 29, Emilia earthquakes (Northern Italy) and the main aftershocks: S-wave attenuation, acceleration source functions and site effects. Geophysical Journal International, 2013, 195, 597-611.                             | 1.0 | 22        |
| 42 | INGV strong-motion data web-portal: a focus on the Emilia seismic sequence of May-June 2012. Annals of Geophysics, 2012, 55, .                                                                                                               | 0.5 | 4         |
| 43 | Preliminary results from EMERSITO, a rapid response network for site-effect studies. Annals of Geophysics, 2012, 55, .                                                                                                                       | 0.5 | 17        |
| 44 | What can we learn from the January 2012 northern Italy earthquakes?. Annals of Geophysics, 2012, 55, .                                                                                                                                       | 0.5 | 2         |
| 45 | The May 2012 Pianura Padana Emiliana seismic sequence: INGV strong-motion data website. Annals of Geophysics, 2012, 55, .                                                                                                                    | 0.5 | 2         |
| 46 | The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results. Annals of Geophysics, 2012, 55, .                                                                                                 | 0.5 | 5         |
| 47 | Evaluation of site effects in the Aterno river valley (Central Italy) from aftershocks of the 2009<br>L'Aquila earthquake. Bulletin of Earthquake Engineering, 2011, 9, 697-715.                                                             | 2.3 | 19        |
| 48 | Separation of source and site effects by generalized inversion technique using the aftershock<br>recordings of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2011, 9, 717-739.                                           | 2.3 | 38        |
| 49 | Frequency variation in site response as observed from strong motion data of the L'Aquila (2009)<br>seismic sequence. Bulletin of Earthquake Engineering, 2011, 9, 869-892.                                                                   | 2.3 | 23        |
| 50 | Identification of accelerometric stations in ITACA with distinctive features in their seismic response.<br>Bulletin of Earthquake Engineering, 2011, 9, 1921-1939.                                                                           | 2.3 | 12        |
| 51 | Site effects observed in alluvial basins: the case of Norcia (Central Italy). Bulletin of Earthquake<br>Engineering, 2011, 9, 1941-1959.                                                                                                     | 2.3 | 29        |
| 52 | Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bulletin of Earthquake Engineering, 2011, 9, 1877-1898.                                                                                        | 2.3 | 109       |
| 53 | Extensive characterization of Italian accelerometric stations from single-station ambient-vibration measurements. Bulletin of Earthquake Engineering, 2011, 9, 1821-1838.                                                                    | 2.3 | 19        |
| 54 | Ground motion prediction equations derived from the Italian strong motion database. Bulletin of<br>Earthquake Engineering, 2011, 9, 1899-1920.                                                                                               | 2.3 | 278       |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Overview of the Italian strong motion database ITACA 1.0. Bulletin of Earthquake Engineering, 2011, 9, 1723-1739.                                                                                          | 2.3 | 115       |
| 56 | Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency.<br>Annals of Geophysics, 2011, 54, .                                                                     | 0.5 | 11        |
| 57 | Strong-Motion Networks in Italy and Their Efficient Use in the Derivation of Regional and Global<br>Predictive Models. Geotechnical, Geological and Earthquake Engineering, 2011, , 53-69.                 | 0.1 | 0         |
| 58 | Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric<br>Archive (ITACA). Bulletin of Earthquake Engineering, 2010, 8, 1209-1230.                             | 2.3 | 76        |
| 59 | Italian strong motion database relative to the period 1972–2004: motivations and aims. Bulletin of<br>Earthquake Engineering, 2010, 8, 1159-1174.                                                          | 2.3 | 6         |
| 60 | The ITalian ACcelerometric Archive (ITACA): processing of strong-motion data. Bulletin of Earthquake<br>Engineering, 2010, 8, 1175-1187.                                                                   | 2.3 | 26        |
| 61 | Italian accelerometric archive: geological, geophysical and geotechnical investigations at strong-motion stations. Bulletin of Earthquake Engineering, 2010, 8, 1189-1207.                                 | 2.3 | 12        |
| 62 | Strong motion monitoring in Italy. Bulletin of Earthquake Engineering, 2010, 8, 1073-1074.                                                                                                                 | 2.3 | 0         |
| 63 | The 6 April 2009 Mw 6.3 L'Aquila (Central Italy) Earthquake: Strong-motion Observations.<br>Seismological Research Letters, 2009, 80, 951-966.                                                             | 0.8 | 76        |
| 64 | Towards a new reference ground motion prediction equation for Italy: update of the<br>Sabetta–Pugliese (1996). Bulletin of Earthquake Engineering, 2009, 7, 591-608.                                       | 2.3 | 27        |
| 65 | The <i>M</i> <sub>w</sub> 6.3, 2009 Lï¿½ï¿½ïĄ½?qquila earthquake: source, path and site effects from spectral analysis of strong motion data. Geophysical Journal International, 2009, 179, 1573-1579.     | 1.0 | 59        |
| 66 | Site Amplifications Observed in the Gubbio Basin, Central Italy: Hints for Lateral Propagation Effects.<br>Bulletin of the Seismological Society of America, 2009, 99, 741-760.                            | 1.1 | 73        |
| 67 | Interevent and Interstation Variability Computed for the Italian Accelerometric Archive (ITACA).<br>Bulletin of the Seismological Society of America, 2009, 99, 2471-2488.                                 | 1.1 | 18        |
| 68 | Ground motion models for the Molise region (Southern Italy). Soil Dynamics and Earthquake<br>Engineering, 2008, 28, 198-211.                                                                               | 1.9 | 13        |
| 69 | Stochastic Strong-Motion Simulation of the Mw 6 Umbria-Marche Earthquake of September 1997:<br>Comparison of Different Approaches. Bulletin of the Seismological Society of America, 2008, 98,<br>662-670. | 1.1 | 18        |
| 70 | ITACA (ITalian ACcelerometric Archive): A Web Portal for the Dissemination of Italian Strong-motion<br>Data. Seismological Research Letters, 2008, 79, 716-722.                                            | 0.8 | 169       |
| 71 | Influence of earthquakes on the stability of slopes. Engineering Geology, 2007, 91, 4-15.                                                                                                                  | 2.9 | 57        |
|    |                                                                                                                                                                                                            |     |           |

Characteristics of strong ground motion data recorded in the Gubbio sedimentary basin (Central) Tj ETQq0 0 0 rgBT  $_{2.3}^{10}$  Verlock 10 Tf 50

56

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Analysis of the Frequency Dependence of the S-Wave Radiation Pattern from Local Earthquakes in<br>Central Italy. Bulletin of the Seismological Society of America, 2006, 96, 415-426.                                                                | 1.1 | 15        |
| 74 | Ground-Motion Predictions from Empirical Attenuation Relationships versus Recorded Data: The Case<br>of the 1997-1998 Umbria-Marche, Central Italy, Strong-Motion Data Set. Bulletin of the Seismological<br>Society of America, 2006, 96, 984-1002. | 1.1 | 52        |
| 75 | Geotechnical Site Characterisation in the Umbria-Marche Area and Evaluation of Earthquake<br>Site-Response. Pure and Applied Geophysics, 2005, 162, 2133-2161.                                                                                       | 0.8 | 25        |

76 Hydrogeological Changes Related to the Umbria?Marche Earthquake of 26 September 1997 (Central) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

| 77 | Site Response of Strong Motion Stations in the Umbria, Central Italy, Region. Bulletin of the<br>Seismological Society of America, 2004, 94, 576-590.                                                           | 1.1              | 54          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 78 | The 1997-1998 Umbria-Marche sequence (central Italy): Source, path, and site effects estimated from strong motion data recorded in the epicentral area. Journal of Geophysical Research, 2004, 109, .           | 3.3              | 49          |
| 79 | The application of predictive modeling techniques to landslides induced by earthquakes: the case<br>study of the 26 September 1997 Umbria–Marche earthquake (Italy). Engineering Geology, 2003, 69,<br>139-159. | 2.9              | 86          |
| 80 | Detection of local site effects through the estimation of building damages. Soil Dynamics and Earthquake Engineering, 2003, 23, 497-511.                                                                        | 1.9              | 4           |
| 81 | Rock falls induced by earthquakes: a statistical approach. Soil Dynamics and Earthquake Engineering, 2002, 22, 565-577.                                                                                         | 1.9              | 77          |
| 82 | The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study<br>in landslide hazard mapping with expert system-like methods. Environmental Geology, 2002, 41, 765-775. | 1.2              | 112         |
| 83 | Measuring the seismic vulnerability of strategic public facilities: response of the healthâ€care system.<br>Disaster Prevention and Management, 2000, 9, 29-38.                                                 | 0.6              | 8           |
| 84 | Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Engineering Geology, 2000, 58, 313-336.                                             | 2.9              | 110         |
| 85 | A correlation between slope failures and accelerometric parameters: the 26 September 1997<br>earthquake (Umbria–Marche, Italy). Soil Dynamics and Earthquake Engineering, 2000, 20, 301-313.                    | 1.9              | 25          |
| 86 | Seismic microzoning of the area struck by Umbria–Marche (Central Italy) Ms 5.9 earthquake of 26<br>September 1997. Soil Dynamics and Earthquake Engineering, 1999, 18, 279-296.                                 | 1.9              | 36          |
| 87 | Title is missing!. Natural Hazards, 1999, 20, 57-82.                                                                                                                                                            | 1.6              | 65          |
| 88 | Title is missing!. Natural Hazards, 1998, 17, 77-97.                                                                                                                                                            | 1.6              | 153         |
| 89 | Applications of statistical and GIS techniques to slope instability zonation (1: 50.000 Fabriano) Tj ETQq1 1 0.784                                                                                              | -314 rgBT<br>1.9 | /Overlock 1 |
|    |                                                                                                                                                                                                                 |                  |             |

90Topographic effects on the hill of Nocera Umbra, central Italy. Geophysical Journal International, 0,<br/>182, 977-987.1.0

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Seismo-Stratigraphic Model for the Urban Area of Milan (Italy) by Ambient-Vibration Monitoring and<br>Implications for Seismic Site Effects Assessment. Frontiers in Earth Science, 0, 10, . | 0.8 | 0         |