Lucia Luzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9246320/publications.pdf

Version: 2024-02-01

117453 133063 4,005 91 34 59 citations h-index g-index papers 95 95 95 2395 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 2011, 9, 1899-1920.	2.3	278
2	Reference database for seismic ground-motion in Europe (RESORCE). Bulletin of Earthquake Engineering, 2014, 12, 311-339.	2.3	212
3	Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5Â%-damped PSA at spectral periods up to 3.0Âs using the RESORCE dataset. Bulletin of Earthquake Engineering, 2014, 12, 391-430.	2.3	205
4	ITACA (ITalian ACcelerometric Archive): A Web Portal for the Dissemination of Italian Strong-motion Data. Seismological Research Letters, 2008, 79, 716-722.	0.8	169
5	Title is missing!. Natural Hazards, 1998, 17, 77-97.	1.6	153
6	Fault Segmentation as Constraint to the Occurrence of the Main Shocks of the 2016 Central Italy Seismic Sequence. Tectonics, 2017, 36, 2370-2387.	1.3	122
7	Overview of the Italian strong motion database ITACA 1.0. Bulletin of Earthquake Engineering, 2011, 9, 1723-1739.	2.3	115
8	The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environmental Geology, 2002, 41, 765-775.	1,2	112
9	Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Engineering Geology, 2000, 58, 313-336.	2.9	110
10	Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bulletin of Earthquake Engineering, 2011, 9, 1877-1898.	2.3	109
11	The Engineering Strongâ€Motion Database: A Platform to Access Panâ€European Accelerometric Data. Seismological Research Letters, 2016, 87, 987-997.	0.8	90
12	The application of predictive modeling techniques to landslides induced by earthquakes: the case study of the 26 September 1997 Umbria–Marche earthquake (Italy). Engineering Geology, 2003, 69, 139-159.	2.9	86
13	Rock falls induced by earthquakes: a statistical approach. Soil Dynamics and Earthquake Engineering, 2002, 22, 565-577.	1.9	77
14	The 6 April 2009 Mw 6.3 L'Aquila (Central Italy) Earthquake: Strong-motion Observations. Seismological Research Letters, 2009, 80, 951-966.	0.8	76
15	Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bulletin of Earthquake Engineering, 2010, 8, 1209-1230.	2.3	76
16	Site Amplifications Observed in the Gubbio Basin, Central Italy: Hints for Lateral Propagation Effects. Bulletin of the Seismological Society of America, 2009, 99, 741-760.	1.1	73
17	Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, 2014, 12, 341-358.	2.3	71
18	Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth. Geophysical Journal International, 2016, 204, 697-718.	1.0	70

#	Article	IF	CITATIONS
19	A Revised Groundâ€Motion Prediction Model for Shallow Crustal Earthquakes in Italy. Bulletin of the Seismological Society of America, 2019, 109, 525-540.	1.1	68
20	Title is missing!. Natural Hazards, 1999, 20, 57-82.	1.6	65
21	The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics. Bulletin of Earthquake Engineering, 2019, 17, 561-582.	2.3	63
22	The Central Italy Seismic Sequence between August and December 2016: Analysis of Strongâ€Motion Observations. Seismological Research Letters, 2017, 88, 1219-1231.	0.8	61
23	The <i>M</i> _w 6.3, 2009 L���Aquila earthquake: source, path and site effects from spectral analysis of strong motion data. Geophysical Journal International, 2009, 179, 1573-1579.	1.0	59
24	Influence of earthquakes on the stability of slopes. Engineering Geology, 2007, 91, 4-15.	2.9	57
25	Topographic effects on the hill of Nocera Umbra, central Italy. Geophysical Journal International, 0, 182, 977-987.	1.0	56
26	Site Response of Strong Motion Stations in the Umbria, Central Italy, Region. Bulletin of the Seismological Society of America, 2004, 94, 576-590.	1.1	54
27	The New ShakeMap in Italy: Progress and Advances in the Last 10 Yr. Seismological Research Letters, 2020, 91, 317-333.	0.8	54
28	Ground-Motion Predictions from Empirical Attenuation Relationships versus Recorded Data: The Case of the 1997-1998 Umbria-Marche, Central Italy, Strong-Motion Data Set. Bulletin of the Seismological Society of America, 2006, 96, 984-1002.	1.1	52
29	Overview on the Strong-Motion Data Recorded during the May-June 2012 Emilia Seismic Sequence. Seismological Research Letters, 2013, 84, 629-644.	0.8	51
30	Applications of statistical and GIS techniques to slope instability zonation (1: 50.000 Fabriano) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 30
31	The 1997-1998 Umbria-Marche sequence (central Italy): Source, path, and site effects estimated from strong motion data recorded in the epicentral area. Journal of Geophysical Research, 2004, 109, .	3.3	49
32	Empirical equations for the prediction of PGA and pseudo spectral accelerations using Iranian strong-motion data. Journal of Seismology, 2018, 22, 263-285.	0.6	45
33	Diminishing highâ€frequency directivity due to a source effect: Empirical evidence from small earthquakes in the Abruzzo region, Italy. Geophysical Research Letters, 2016, 43, 5000-5008.	1.5	43
34	Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2011, 9, 717-739.	2.3	38
35	Seismic microzoning of the area struck by Umbria–Marche (Central Italy) Ms 5.9 earthquake of 26 September 1997. Soil Dynamics and Earthquake Engineering, 1999, 18, 279-296.	1.9	36
36	Groundâ€Motion Prediction Equations for Regionâ€Specific Probabilistic Seismicâ€Hazard Analysis. Bulletin of the Seismological Society of America, 2016, 106, 73-92.	1.1	36

#	Article	IF	CITATIONS
37	The pan-European engineering strong motion (ESM) flatfile: consistency check via residual analysis. Bulletin of Earthquake Engineering, 2019, 17, 583-602.	2.3	34
38	Single-Station Sigma for Italian Strong-Motion Stations. Bulletin of the Seismological Society of America, 2014, 104, 467-483.	1.1	31
39	Site effects observed in alluvial basins: the case of Norcia (Central Italy). Bulletin of Earthquake Engineering, 2011, 9, 1941-1959.	2.3	29
40	Seismological analyses of the seismic microzonation of 138 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bulletin of Earthquake Engineering, 2020, 18, 5553-5593.	2.3	29
41	Strong-motion processing service: a tool to access and analyse earthquakes strong-motion waveforms. Bulletin of Earthquake Engineering, 2018, 16, 2641-2651.	2.3	28
42	Towards a new reference ground motion prediction equation for Italy: update of the Sabetta–Pugliese (1996). Bulletin of Earthquake Engineering, 2009, 7, 591-608.	2.3	27
43	The ITalian ACcelerometric Archive (ITACA): processing of strong-motion data. Bulletin of Earthquake Engineering, 2010, 8, 1175-1187.	2.3	26
44	Site characterization of Italian accelerometric stations. Bulletin of Earthquake Engineering, 2017, 15, 2329-2348.	2.3	26
45	Site response analyses for complex geological and morphological conditions: relevant case-histories from 3rd level seismic microzonation in Central Italy. Bulletin of Earthquake Engineering, 2020, 18, 5741-5777.	2.3	26
46	A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria–Marche, Italy). Soil Dynamics and Earthquake Engineering, 2000, 20, 301-313.	1.9	25
47	Geotechnical Site Characterisation in the Umbria-Marche Area and Evaluation of Earthquake Site-Response. Pure and Applied Geophysics, 2005, 162, 2133-2161.	0.8	25
48	Characteristics of strong ground motion data recorded in the Gubbio sedimentary basin (Central) Tj ETQq0 0 0	rgBT_lOver	lock 10 Tf 50
49	Ground motion models for the new seismic hazard model of Italy (MPS19): selection for active shallow crustal regions and subduction zones. Bulletin of Earthquake Engineering, 2020, 18, 3487-3516.	2.3	24
50	Frequency variation in site response as observed from strong motion data of the L'Aquila (2009) seismic sequence. Bulletin of Earthquake Engineering, 2011, 9, 869-892.	2.3	23
51	The 2012 May 20 and 29, Emilia earthquakes (Northern Italy) and the main aftershocks: S-wave attenuation, acceleration source functions and site effects. Geophysical Journal International, 2013, 195, 597-611.	1.0	22
52	Spatial Correlation Model of Systematic Site and Path Effects for Groundâ€Motion Fields in Northern Italy. Bulletin of the Seismological Society of America, 2019, 109, 1419-1434.	1.1	21
53	Systematic source, path and site effects on ground motion variability: the case study of Northern Italy. Bulletin of Earthquake Engineering, 2017, 15, 4563-4583.	2.3	20
54	2016–2017 Central Italy seismic sequence: strong-motion data analysis and design earthquake selection for seismic microzonation purposes. Bulletin of Earthquake Engineering, 2020, 18, 5533-5551.	2.3	20

#	Article	IF	Citations
55	Evaluation of site effects in the Aterno river valley (Central Italy) from aftershocks of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2011, 9, 697-715.	2.3	19
56	Extensive characterization of Italian accelerometric stations from single-station ambient-vibration measurements. Bulletin of Earthquake Engineering, 2011, 9, 1821-1838.	2.3	19
57	Stochastic Strong-Motion Simulation of the Mw 6 Umbria-Marche Earthquake of September 1997: Comparison of Different Approaches. Bulletin of the Seismological Society of America, 2008, 98, 662-670.	1.1	18
58	Interevent and Interstation Variability Computed for the Italian Accelerometric Archive (ITACA). Bulletin of the Seismological Society of America, 2009, 99, 2471-2488.	1.1	18
59	Fling Effects from Nearâ€Source Strongâ€Motion Records: Insights from the 2016 MwÂ6.5 Norcia, Central Italy, Earthquake. Seismological Research Letters, 2019, 90, 659-671.	0.8	18
60	Temporary dense seismic network during the 2016 Central Italy seismic emergency for microzonation studies. Scientific Data, 2019, 6, 182.	2.4	17
61	Preliminary results from EMERSITO, a rapid response network for site-effect studies. Annals of Geophysics, 2012, 55, .	0.5	17
62	Analysis of Near-Source Ground Motion from the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1495-1505.	1.1	16
63	Analysis of the Frequency Dependence of the S-Wave Radiation Pattern from Local Earthquakes in Central Italy. Bulletin of the Seismological Society of America, 2006, 96, 415-426.	1.1	15
64	Update of the single-station sigma analysis for the Italian strong-motion stations. Bulletin of Earthquake Engineering, $2017, 15, 2411-2428$.	2.3	14
65	A ground motion model for volcanic areas in Italy. Bulletin of Earthquake Engineering, 2020, 18, 57-76.	2.3	14
66	Ground motion models for the Molise region (Southern Italy). Soil Dynamics and Earthquake Engineering, 2008, 28, 198-211.	1.9	13
67	Site effects observed in the Norcia intermountain basin (Central Italy) exploiting a 20-year monitoring. Bulletin of Earthquake Engineering, 2019, 17, 97-118.	2.3	13
68	Italian accelerometric archive: geological, geophysical and geotechnical investigations at strong-motion stations. Bulletin of Earthquake Engineering, 2010, 8, 1189-1207.	2.3	12
69	Identification of accelerometric stations in ITACA with distinctive features in their seismic response. Bulletin of Earthquake Engineering, 2011, 9, 1921-1939.	2.3	12
70	Accessing European Strong-Motion Data: An Update on ORFEUS Coordinated Services. Seismological Research Letters, 2021, 92, 1642-1658.	0.8	12
71	Site effect studies following the 2016 Mw 6.0 Amatrice Earthquake (Italy): the Emersito Task Force activities. Annals of Geophysics, 2016, 59, .	0.5	12
72	Simulation of non-stationary stochastic ground motions based on recent Italian earthquakes. Bulletin of Earthquake Engineering, 2021, 19, 3287-3315.	2.3	11

#	Article	IF	CITATIONS
73	Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency. Annals of Geophysics, 2011, 54, .	0.5	11
74	SYNTHESIS: a web repository of synthetic waveforms. Bulletin of Earthquake Engineering, 2017, 15, 2483-2496.	2.3	9
75	Measuring the seismic vulnerability of strategic public facilities: response of the healthâ€care system. Disaster Prevention and Management, 2000, 9, 29-38.	0.6	8
76	Hydrogeological Changes Related to the Umbria?Marche Earthquake of 26 September 1997 (Central) Tj ETQq0	0 0 rgBT /	Overlock 10 T
77	Improving seismic hazard approaches for critical infrastructures: a pilot study in the Po Plain. Bulletin of Earthquake Engineering, 2018, 16, 2529-2564.	2.3	7
78	Preliminary analysis of the accelerometric recordings of the August 24th, 2016 MW 6.0 Amatrice earthquake. Annals of Geophysics, 2016, 59, .	0.5	7
79	Italian strong motion database relative to the period 1972–2004: motivations and aims. Bulletin of Earthquake Engineering, 2010, 8, 1159-1174.	2.3	6
80	A GIS procedure for the topographic classification of Italy, according to the seismic code provisions. Soil Dynamics and Earthquake Engineering, 2021, 148, 106848.	1.9	6
81	The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results. Annals of Geophysics, 2012, 55, .	0.5	5
82	Detection of local site effects through the estimation of building damages. Soil Dynamics and Earthquake Engineering, 2003, 23, 497-511.	1.9	4
83	Preface to the Focus Section on European Seismic Networks and Associated Services and Products. Seismological Research Letters, 2021, 92, 1483-1490.	0.8	4
84	INGV strong-motion data web-portal: a focus on the Emilia seismic sequence of May-June 2012. Annals of Geophysics, 2012, 55, .	0.5	4
85	Engineering Characterization of Earthquake Ground Motions. , 2014, , 1-18.		3
86	What can we learn from the January 2012 northern Italy earthquakes?. Annals of Geophysics, 2012, 55, .	0.5	2
87	The May 2012 Pianura Padana Emiliana seismic sequence: INGV strong-motion data website. Annals of Geophysics, 2012, 55, .	0.5	2
88	Strong motion monitoring in Italy. Bulletin of Earthquake Engineering, 2010, 8, 1073-1074.	2.3	0
89	Strong-Motion Networks in Italy and Their Efficient Use in the Derivation of Regional and Global Predictive Models. Geotechnical, Geological and Earthquake Engineering, 2011, , 53-69.	0.1	0
90	Engineering Characterization of Earthquake Ground Motions., 2015,, 986-1001.		0

#	Article	IF	CITATIONS
91	Seismo-Stratigraphic Model for the Urban Area of Milan (Italy) by Ambient-Vibration Monitoring and Implications for Seismic Site Effects Assessment. Frontiers in Earth Science, 0, 10, .	0.8	O