Yueping Fang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9245912/yueping-fang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58
papers

2,978
citations

4 g-index

60
ext. papers

25
h-index

9.4
ext. citations

9.4
avg, IF

L-index

#	Paper	IF	Citations
58	CdS@Mg(OH)2 core/shell composite photocatalyst for efficient visible-light photocatalytic overall water splitting. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 8729-8738	6.7	1
57	Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2022 , 434, 134673	14.7	4
56	Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co-V bimetallic oxides <i>Journal of Colloid and Interface Science</i> , 2022 , 619, 188-197	9.3	1
55	Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam. <i>Journal of Power Sources</i> , 2022 , 538, 231536	8.9	2
54	Phase-Controllable Growth Ni P Modified CdS@Ni S Electrodes for Efficient Electrocatalytic and Enhanced Photoassisted Electrocatalytic Overall Water Splitting <i>Small Methods</i> , 2021 , 5, e2100878	12.8	6
53	Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. <i>Journal of the American Chemical Society</i> , 2021 , 143, 4790-4800	16.4	37
52	Modification of Energy Level Alignment for Boosting Carbon-Based CsPbI2Br Solar Cells with 14% Certified Efficiency. <i>Advanced Functional Materials</i> , 2021 , 31, 2011187	15.6	34
51	Vanadium Nitride Quantum Dots/Holey Graphene Matrix Boosting Adsorption and Conversion Reaction Kinetics for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & ACS APPLIED & ACS APPLIED</i>	9.5	4
50	A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2021 , 13, 37299-37307	9.5	6
49	FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer. <i>Journal of Energy Chemistry</i> , 2021 , 52, 92-101	12	20
48	CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting. <i>Chemical Engineering Journal</i> , 2021 , 405, 126231	14.7	18
47	Antioxidative Stannous Oxalate Derived Lead-Free Stable CsSnX3 (X=Cl, Br, and I) Perovskite Nanocrystals. <i>Angewandte Chemie</i> , 2021 , 133, 670-675	3.6	10
46	Antioxidative Stannous Oxalate Derived Lead-Free Stable CsSnX (X=Cl, Br, and I) Perovskite Nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 660-665	16.4	25
45	In situ constructing Ni foam supported ZnO-CdS nanorod arrays for enhanced photocatalytic and photoelectrochemical activity. <i>Journal of Alloys and Compounds</i> , 2021 , 868, 159187	5.7	8
44	Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120139	21.8	21
43	Sustainable synthesis of low-cost nitrogen-doped-carbon coated Co3W3C@g-C3N4 composite photocatalyst for efficient hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 426, 131208	14.7	8
42	Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 17378-17387	6.7	33

(2019-2020)

41	An amorphous trimetallic (Nilloffe) hydroxide-sheathed 3D bifunctional electrode for superior oxygen evolution and high-performance cable-type flexible zincfir batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5601-5611	13	32
40	FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: a novel cocatalyst for boosting photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3481-3490	13	35
39	Enhanced Photogenerated Electron Transfer in a Semiartificial Photosynthesis System Based on Highly Dispersed Titanium Oxide Nanoparticles. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1822-18	27 4	12
38	Bifunctional CdS@Co9S8/Ni3S2 catalyst for efficient electrocatalytic and photo-assisted electrocatalytic overall water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3083-3096	13	43
37	Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 62-71	11.3	18
36	In situ photo-derived MnOOH collaborating with Mn2Co2C@C dual co-catalysts boost photocatalytic overall water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17120-17127	13	12
35	Perovskite-Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI2Br Solar Cells. <i>Solar Rrl</i> , 2020 , 4, 2000431	7.1	14
34	Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 43844-43853	9.5	31
33	Bio-inspired multilayered graphene-directed assembly of monolithic photo-membrane for full-visible light response and efficient charge separation. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 117587	21.8	19
32	Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. <i>Chemosphere</i> , 2020 , 239, 124831	8.4	37
31	Photodeposited Construction of Pt-CdS/g-CN-MnO Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting. <i>ACS Applied Materials & Discounty of the Photocatalyst for Efficient Water Splitting</i> . <i>ACS Applied Materials & Discounty of the Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting</i> .	588	55
30	Ternary Monolithic ZnS/CdS/rGO Photomembrane with Desirable Charge Separation/Transfer Routes for Effective Photocatalytic and Photoelectrochemical Hydrogen Generation. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 3431-3441	4.5	9
29	Photoelectrochemical detection of ultra-trace fluorine ion using TiO nanorod arrays as a probe <i>RSC Advances</i> , 2019 , 9, 26712-26717	3.7	3
28	Rational Design and Controllable Synthesis of Multishelled FeO@SnO@C Nanotubes as Advanced Anode Material for Lithium-/Sodium-Ion Batteries. <i>ACS Applied Materials & Design (Section 2019)</i> , 11, 369	9 ⁴ 9 ⁵ 36	9 33
27	CdS@Ni3S2 coreBhell nanorod arrays on nickel foam: a multifunctional catalyst for efficient electrochemical catalytic, photoelectrochemical and photocatalytic H2 production reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2560-2574	13	56
26	CdS branched TiO2: Rods-on-rods nanoarrays for efficient photoelectrochemical (PEC) and self-bias photocatalytic (PC) hydrogen production. <i>Journal of Power Sources</i> , 2019 , 430, 32-42	8.9	25
25	Dual-Confined SiO Embedded in TiO2 Shell and 3D Carbon Nanofiber Web as Stable Anode Material for Superior Lithium Storage. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801800	4.6	20
24	Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes. Sustainable Energy and Fuels, 2019, 3, 125	5 <u>8</u> :826	8 ⁴

23	Modified Graphitic Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2019 , 12, 4996-5006	8.3	33
22	Magnetic Fe3C@C nanoparticles as a novel cocatalyst for boosting visible-light-driven photocatalytic performance of g-C3N4. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 26970-2698	1 ^{6.7}	22
21	Carbon-Coated Cu nanoparticles as a Cocatalyst of g-C3N4 for Enhanced Photocatalytic H2 Evolution Activity under Visible-Light Irradiation. <i>Energy Technology</i> , 2019 , 7, 1800846	3.5	4
20	Simultaneous Encapsulation of Nano-Si in Redox Assembled rGO Film as Binder-Free Anode for Flexible/Bendable Lithium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Appli</i>	9.5	41
19	Carbon-coated Cu-TiO2 nanocomposite with enhanced photostability and photocatalytic activity. <i>Applied Surface Science</i> , 2019 , 466, 254-261	6.7	40
18	Electrospray synthesis of nano-Si encapsulated in graphite/carbon microplates as robust anodes for high performance lithium-ion batteries. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 679-687	5.8	21
17	Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1689	0- ¹ 1689	9 ⁴¹
16	3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9930-9939	8.3	63
15	Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H2 production over g-C3N4 nanosheets under visible light. <i>Catalysis Science and Technology</i> , 2017 , 7, 1193-1202	5.5	92
14	Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2444-2459	13	51
13	Low-cost nanocarbon electrodes on arbitrary fibrous substrates as efficient bifacial photovoltaic wires. <i>RSC Advances</i> , 2017 , 7, 9653-9661	3.7	4
12	Ultradispersed and Single-Layered MoS Nanoflakes Strongly Coupled with Graphene: An Optimized Structure with High Kinetics for the Hydrogen Evolution Reaction. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 39380-39390	9.5	37
11	Visible light photoelectrochemical sulfide sensor based the use of TiO2 nanotube arrays loaded with Cu2O. <i>Mikrochimica Acta</i> , 2017 , 184, 4065-4072	5.8	27
10	Heterostructured CoO/3D-TiO2 nanorod arrays for photoelectrochemical water splitting hydrogen production. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 455-461	2.6	23
9	Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 928-937	6.7	32
8	Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts. <i>RSC Advances</i> , 2016 , 6, 31497-31506	3.7	85
7	FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS. <i>Surface Review and Letters</i> , 2016 , 23, 1550099	1.1	
6	Metal-free carbon nanotubeBiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. <i>Catalysis Science and Technology</i> , 2015 , 5, 2798-2806	5.5	67

LIST OF PUBLICATIONS

5	Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18244-18255	13	265
4	Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10999-11005	13	65
3	Engineering heterogeneous semiconductors for solar water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2485-2534	13	1271
2	Ni Foam Supported TiO 2 Nanorod Arrays with CdS Branches: Type II and Z-Scheme Mechanisms Coexisted Monolithic Catalyst Film for Improved Photocatalytic H 2 Production. <i>Solar Rrl</i> ,2200187	7.1	2
1	Portable Dual-Modular Immunosensor Constructed from Bimetallic Metal Drganic Framework Heterostructure Grafted with Enzyme-Mimicking Label for Rosiglitazone Detection. <i>Advanced Functional Materials</i> , 2203244	15.6	2