
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9245842/publications.pdf Version: 2024-02-01

ΗλΟ ΖΗΕΝΟ

#	Article	IF	CITATIONS
1	Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 2007, 150, 243-250.	3.7	1,481
2	Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environmental Science & Technology, 2008, 42, 5580-5585.	4.6	981
3	Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental Science & Technology, 2004, 38, 4649-4655.	4.6	904
4	Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application. Chemical Reviews, 2010, 110, 5989-6008.	23.0	741
5	Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter. Environmental Science & Technology, 1997, 31, 792-799.	4.6	705
6	Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science & Technology, 2006, 40, 1855-1861.	4.6	699
7	Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 2017, 227, 98-115.	3.7	634
8	Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environmental Science & Technology, 2014, 48, 9995-10009.	4.6	573
9	Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents. Environmental Science & Technology, 1996, 30, 2432-2440.	4.6	491
10	Black Carbon (Biochar) In Water/Soil Environments: Molecular Structure, Sorption, Stability, and Potential Risk. Environmental Science & Technology, 2017, 51, 13517-13532.	4.6	441
11	Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 2021, 407, 124357.	6.5	414
12	Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206, 32-39.	2.3	365
13	Investigating the mechanisms of biochar's removal of lead from solution. Bioresource Technology, 2015, 177, 308-317.	4.8	337
14	Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 2013, 181, 60-67.	3.7	334
15	Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environmental Science & Technology, 2012, 46, 12391-12398.	4.6	332
16	Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environmental Science & Technology, 2014, 48, 8581-8587.	4.6	330
17	Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution, 2017, 229, 846-853.	3.7	330
18	Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 2011, 102, 5757-5763.	4.8	312

#	Article	IF	CITATIONS
19	Degradation of <i>p</i> -Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science & Technology, 2016, 50, 694-700.	4.6	302
20	Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 2013, 130, 463-471.	4.8	301
21	Physiological effects of magnetite (Fe ₃ O ₄) nanoparticles on perennial ryegrass (<i>Lolium perenne</i> L.) and pumpkin (<i>Cucurbita mixta</i>) plants. Nanotoxicology, 2011, 5, 30-42.	1.6	289
22	Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2006, 40, 5804-5810.	4.6	275
23	Impact of Deashing Treatment on Biochar Structural Properties and Potential Sorption Mechanisms of Phenanthrene. Environmental Science & amp; Technology, 2013, 47, 11473-11481.	4.6	216
24	Contribution of Different Sulfamethoxazole Species to Their Overall Adsorption on Functionalized Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 3806-3811.	4.6	212
25	Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 2017, 17, 780-789.	1.5	208
26	Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111, 18-27.	5.3	203
27	Enhanced growth of halophyte plants in biocharâ€amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell and Environment, 2018, 41, 517-532.	2.8	194
28	Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (<i>Epinephelus) Tj ETQq0 0 0 r 2020, 54, 6202-6212.</i>	gBT /Over 4.6	lock 10 Tf 50 187
29	Heteroaggregation of Graphene Oxide with Minerals in Aqueous Phase. Environmental Science & Technology, 2015, 49, 2849-2857.	4.6	182
30	Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environmental Science & Technology, 2018, 52, 10369-10379.	4.6	178
31	Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 2018, 610-611, 951-960.	3.9	170
32	Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. Environmental Science & amp; Technology, 2021, 55, 15579-15595.	4.6	169
33	Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology, 2012, 118, 120-127.	4.8	163
34	Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 2013, 174, 289-296.	3.7	156
35	Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 2020, 713, 136635.	3.9	156
36	Biochar's stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 2020, 364, 114184.	2.3	154

HAO ZHENG

#	Article	IF	CITATIONS
37	Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal, 2014, 248, 128-134.	6.6	152
38	Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process. Journal of Hazardous Materials, 2012, 233-234, 89-96.	6.5	147
39	Strong Sorption of Phenanthrene by Condensed Organic Matter in Soils and Sediments. Environmental Science & Technology, 2007, 41, 3952-3958.	4.6	144
40	New Evidence for High Sorption Capacity of Hydrochar for Hydrophobic Organic Pollutants. Environmental Science & Technology, 2016, 50, 13274-13282.	4.6	142
41	Sorption of Organic Contaminants by Biopolymer-Derived Chars. Environmental Science & Technology, 2007, 41, 8342-8348.	4.6	131
42	Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications. Annual Review of Food Science and Technology, 2018, 9, 129-153.	5.1	131
43	Adsorption of Aromatic Carboxylate Ions to Black Carbon (Biochar) Is Accompanied by Proton Exchange with Water. Environmental Science & Technology, 2011, 45, 9240-9248.	4.6	128
44	Adsorption and Desorption of Phenanthrene on Carbon Nanotubes in Simulated Gastrointestinal Fluids. Environmental Science & Technology, 2011, 45, 6018-6024.	4.6	125
45	Competitive Sorption of Pyrene on Wood Chars. Environmental Science & Technology, 2006, 40, 3267-3272.	4.6	123
46	Effect of humic acid (HA) on sulfonamide sorption by biochars. Environmental Pollution, 2015, 204, 306-312.	3.7	118
47	Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environmental Pollution, 2016, 210, 85-93.	3.7	109
48	Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 2015, 138, 576-583.	4.2	107
49	Remediation of petroleum contaminated soils through composting and rhizosphere degradation. Journal of Hazardous Materials, 2011, 190, 677-685.	6.5	105
50	Part V—sorption of pharmaceuticals and personal care products. Environmental Science and Pollution Research, 2009, 16, 106-116.	2.7	104
51	Adsorption of Phenanthrene on Multilayer Graphene as Affected by Surfactant and Exfoliation. Environmental Science & Technology, 2014, 48, 331-339.	4.6	101
52	Competitive Adsorption of Naphthalene with 2,4-Dichlorophenol and 4-Chloroaniline on Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 3021-3027.	4.6	97
53	Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environmental Pollution, 2013, 174, 222-228.	3.7	97
54	Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes. Environmental Pollution, 2012, 167, 138-147.	3.7	88

#	Article	IF	CITATIONS
55	Colloidal Stability of Al ₂ O ₃ Nanoparticles as Affected by Coating of Structurally Different Humic Acids. Langmuir, 2010, 26, 873-879.	1.6	87
56	Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. Journal of Environmental Quality, 2012, 41, 1087-1095.	1.0	87
57	Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. Aquatic Toxicology, 2017, 191, 122-130.	1.9	87
58	Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environmental Pollution, 2011, 159, 850-857.	3.7	82
59	Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon, 2017, 114, 671-678.	5.4	81
60	Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. Journal of Hazardous Materials, 2021, 420, 126599.	6.5	77
61	Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environmental Pollution, 2010, 158, 2826-2832.	3.7	73
62	Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. Journal of Hazardous Materials, 2020, 396, 122598.	6.5	73
63	Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Research, 2016, 102, 313-320.	5.3	72
64	Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 2022, 430, 133142.	6.6	71
65	Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water Research, 2022, 210, 117985.	5.3	70
66	EFFECTS OF METAL CATIONS ON SORPTION AND DESORPTION OF ORGANIC COMPOUNDS IN HUMIC ACIDS. Soil Science, 2001, 166, 107-115.	0.9	69
67	Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Science of the Total Environment, 2012, 427-428, 247-252.	3.9	69
68	Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Science of the Total Environment, 2021, 760, 143342.	3.9	69
69	Iron-carbon composite from carbonization of iron-crosslinked sodium alginate for Cr(VI) removal. Chemical Engineering Journal, 2019, 362, 21-29.	6.6	66
70	Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere, 2020, 246, 125699.	4.2	66
71	Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 2016, 282, 120-128.	2.3	65
72	Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Particle and Fibre Toxicology, 2018, 15, 45.	2.8	65

#	Article	IF	CITATIONS
73	Coadsorption, desorption hysteresis and sorption thermodynamics of sulfamethoxazole and carbamazepine on graphene oxide and graphite. Carbon, 2013, 65, 243-251.	5.4	64
74	Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals. Science of the Total Environment, 2017, 607-608, 1428-1436.	3.9	64
75	Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence. Science of the Total Environment, 2019, 657, 953-962.	3.9	62
76	pH-dependent sorption of sulfonamide antibiotics onto biochars: Sorption mechanisms and modeling. Environmental Pollution, 2019, 248, 48-56.	3.7	61
77	Adsorption of Bovine Serum Albumin and Lysozyme on Functionalized Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 22249-22257.	1.5	59
78	Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Research, 2016, 95, 250-259.	5.3	59
79	Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant- and manure-derived biochars. Science of the Total Environment, 2014, 473-474, 308-316.	3.9	58
80	Competitive Sorption Used To Probe Strong Hydrogen Bonding Sites for Weak Organic Acids on Carbon Nanotubes. Environmental Science & Technology, 2015, 49, 1409-1417.	4.6	58
81	Pulmonary Surfactant Suppressed Phenanthrene Adsorption on Carbon Nanotubes through Solubilization and Competition As Examined by Passive Dosing Technique. Environmental Science & Technology, 2012, 46, 5369-5377.	4.6	56
82	Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. Journal of Cleaner Production, 2018, 176, 463-473.	4.6	56
83	Key knowledge gaps for One Health approach to mitigate nanoplastic risks. , 2022, 1, 11-22.		56
84	Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions. Environmental Science & Technology, 2017, 51, 2635-2642.	4.6	54
85	Differential toxicity of functionalized polystyrene microplastics to clams (Meretrix meretrix) at three key development stages of life history. Marine Pollution Bulletin, 2019, 139, 346-354.	2.3	54
86	Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecological Engineering, 2016, 94, 329-336.	1.6	53
87	The role of biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 2020, 71, 520-542.	2.4	53
88	Effects of adding biochar on the properties and nitrogen bioavailability of an acidic soil. European Journal of Soil Science, 2017, 68, 559-572.	1.8	51
89	Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere, 2018, 204, 474-482.	4.2	50
90	A new potential function for the calculation of contact forces in the combined finite–discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41, 265-283.	1.7	49

HAO ZHENG

#	Article	IF	CITATIONS
91	Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica. Marine Pollution Bulletin, 2020, 150, 110660.	2.3	49
92	Variation in sorption of propiconazole with biochars: The effect of temperature, mineral, molecular structure, and nano-porosity. Chemosphere, 2016, 142, 56-63.	4.2	48
93	Phenanthrene binding by humic acid–protein complexes as studied by passive dosing technique. Environmental Pollution, 2014, 184, 145-153.	3.7	45
94	Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresource Technology, 2012, 103, 367-373.	4.8	44
95	New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 130710121153005.	4.6	44
96	Pyrolysis of Arundo donax L. to produce pyrolytic vinegar and its effect on the growth of dinoflagellate Karenia brevis. Bioresource Technology, 2018, 247, 273-281.	4.8	44
97	Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 2019, 19, 3934-3944.	1.5	44
98	Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons. Science of the Total Environment, 2017, 593-594, 124-133.	3.9	43
99	Distribution of different surface modified carbon dots in pumpkin seedlings. Scientific Reports, 2018, 8, 7991.	1.6	43
100	Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. Journal of Hazardous Materials, 2021, 417, 126047.	6.5	43
101	Cosorption of organic chemicals with different properties: Their shared and different sorption sites. Environmental Pollution, 2012, 160, 178-184.	3.7	41
102	Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 2018, 243, 543-552.	3.7	41
103	Biochar reduced Chinese chive (Allium tuberosum) uptake and dissipation of thiamethoxam in an agricultural soil. Journal of Hazardous Materials, 2020, 390, 121749.	6.5	41
104	Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. Journal of Hazardous Materials, 2022, 424, 127421.	6.5	40
105	Competitive and Complementary Adsorption of Bisphenol A and 17α-Ethinyl Estradiol on Carbon Nanomaterials. Journal of Agricultural and Food Chemistry, 2010, 58, 8338-8343.	2.4	39
106	Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations. Environmental Pollution, 2018, 240, 342-352.	3.7	38
107	Characteristics of algae-derived biochars and their sorption and remediation performance for sulfamethoxazole in marine environment. Chemical Engineering Journal, 2022, 430, 133092.	6.6	38
108	Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. Science of the Total Environment, 2021, 796, 148962.	3.9	37

#	Article	IF	CITATIONS
109	Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes. Environmental Pollution, 2018, 243, 206-217.	3.7	36
110	Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. Journal of Hazardous Materials, 2021, 416, 126126.	6.5	36
111	N2O and CH4 emissions from N-fertilized rice paddy soil can be mitigated by wood vinegar application at an appropriate rate. Atmospheric Environment, 2018, 185, 153-158.	1.9	35
112	Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. Science of the Total Environment, 2020, 738, 139685.	3.9	35
113	Sorption of copper by chemically modified aspen wood fibers. Chemosphere, 2009, 76, 1056-1061.	4.2	33
114	Insight into the significant contribution of intrinsic defects of carbon-based materials for the efficient removal of tetracycline antibiotics. Chemical Engineering Journal, 2022, 435, 134822.	6.6	33
115	Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, 2019, 224, 151-161.	4.2	30
116	Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles. Environmental Pollution, 2013, 176, 228-233.	3.7	29
117	Pyroligneous acid mitigated dissemination of antibiotic resistance genes in soil. Environment International, 2020, 145, 106158.	4.8	29
118	Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous phase. Science of the Total Environment, 2018, 634, 595-605.	3.9	28
119	Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. Journal of Hazardous Materials, 2022, 427, 127870.	6.5	28
120	Dispersant selection for nanomaterials: Insight into dispersing functionalized carbon nanotubes by small polar aromatic organic molecules. Carbon, 2015, 91, 494-505.	5.4	26
121	Comparison of six digestion methods on fluorescent intensity and morphology of the fluorescent polystyrene beads. Marine Pollution Bulletin, 2018, 131, 515-524.	2.3	26
122	Wood vinegar and biochar co-application mitigates nitrous oxide and methane emissions from rice paddy soil: A two-year experiment. Environmental Pollution, 2020, 267, 115403.	3.7	26
123	Processes and mechanisms of photosynthesis augmented by engineered nanomaterials. Environmental Chemistry, 2019, 16, 430.	0.7	26
124	Mechanistic understanding of highly selective adsorption of bisphenols on microporous-dominated nitrogen-doped framework carbon. Science of the Total Environment, 2021, 762, 143115.	3.9	25
125	Functionalized polystyrene nanoplastic-induced energy homeostasis imbalance and the immunomodulation dysfunction of marine clams (<i>Meretrix meretrix</i>) at environmentally relevant concentrations. Environmental Science: Nano, 2021, 8, 2030-2048.	2.2	25
126	Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization. Environmental Science and Pollution Research, 2018, 25, 8388-8395.	2.7	24

#	Article	IF	CITATIONS
127	Inhibitory mechanism of phthalate esters on Karenia brevis. Chemosphere, 2016, 155, 498-508.	4.2	23
128	Fate of four phthalate esters with presence of Karenia brevis: Uptake and biodegradation. Aquatic Toxicology, 2019, 206, 81-90.	1.9	23
129	Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. Science of the Total Environment, 2022, 833, 155183.	3.9	23
130	Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	23
131	Comparison of different crop residue-based technologies for their energy production and air pollutant emission. Science of the Total Environment, 2020, 707, 136122.	3.9	21
132	The Fate of p-Nitrophenol in Goethite-Rich and Sulfide-Containing Dynamic Anoxic/Oxic Environments. Environmental Science & Technology, 2020, 54, 9427-9436.	4.6	21
133	Soil structures and immobilization of typical contaminants in soils in response to diverse microplastics. Journal of Hazardous Materials, 2022, 438, 129555.	6.5	20
134	Medium optimization for ε-poly-L-lysine production by <i>Streptomyces diastatochromogenes</i> using response surface methodology. Letters in Applied Microbiology, 2018, 66, 124-131.	1.0	19
135	Direct Spectroscopic Evidence for Charge-Assisted Hydrogen-Bond Formation between Ionizable Organic Chemicals and Carbonaceous Materials. Environmental Science & Technology, 2022, 56, 9356-9366.	4.6	19
136	Effect of Biochar on the Enantioselective Soil Dissipation and Lettuce Uptake and Translocation of the Chiral Pesticide Metalaxyl in Contaminated Soil. Journal of Agricultural and Food Chemistry, 2019, 67, 13550-13557.	2.4	17
137	Light-driven inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by oxygen-doped carbon nitride nanosheets. Chemical Engineering Journal, 2021, 417, 128094.	6.6	16
138	Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. Critical Reviews in Environmental Science and Technology, 2023, 53, 504-526.	6.6	16
139	Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China. Renewable and Sustainable Energy Reviews, 2017, 67, 1153-1161.	8.2	15
140	Potential Toxic Compounds in Biochar. , 2019, , 349-384.		15
141	Biochar mitigates allelopathy through regulating allelochemical generation from plants and accumulation in soil. , 2022, 1, .		15
142	Effects of Low-Molecular-Weight Organic Acids on Soil Micropores and Implication for Organic Contaminant Availability. Communications in Soil Science and Plant Analysis, 2014, 45, 1120-1132.	0.6	14
143	Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems. Environmental Pollution, 2014, 194, 203-209.	3.7	14
144	Biochar for Water and Soil Remediation: Production, Characterization, and Application. , 2020, , 153-196.		13

HAO ZHENG

#	Article	IF	CITATIONS
145	Novel Insights into the Impact of Nano-Biochar on Composition and Structural Transformation of Mineral/Nano-Biochar Heteroaggregates in the Presence of Root Exudates. Environmental Science & Technology, 2022, 56, 9816-9825.	4.6	13
146	Comparison of the ecotoxicological effects of biochar and activated carbon on a marine clam (Meretrix meretrix). Journal of Cleaner Production, 2018, 180, 252-262.	4.6	12
147	Trends in atmospheric particles and their light extinction performance between 1980 and 2015 in Beijing, China. Chemosphere, 2018, 205, 52-61.	4.2	11
148	Mapping gold nanoparticles on and in edible leaves in situ using surface enhanced Raman spectroscopy. RSC Advances, 2016, 6, 60152-60159.	1.7	10
149	Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China. Physics and Chemistry of the Earth, 2018, 103, 11-18.	1.2	9
150	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	3.7	9
151	Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation. Agronomy, 2021, 11, 1086.	1.3	8
152	Biochar Enhanced Growth and Biological Nitrogen Fixation of Wild Soybean (Glycine max subsp. soja) Tj ETQq0 C) 0 rgBT /C 1.9	verlock 10 Ti
153	Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the in vitro gastrointestinal system. Science of the Total Environment, 2016, 566-567, 50-56.	3.9	6
154	Rapid and efficient removal of silver nanoparticles from plant surfaces using sodium hypochlorite and ammonium hydroxide solution. Food Control, 2019, 98, 68-73.	2.8	6
155	Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils?. Chemosphere, 2021, 283, 131304.	4.2	6
156	Spatial Patterns of Microplastics in Surface Seawater, Sediment, and Sand Along Qingdao Coastal Environment. Frontiers in Marine Science, 2022, 9, .	1.2	6
157	A novel method of rural sewage disinfection via root extracts of hydrophytes. Ecological Engineering, 2014, 64, 344-349.	1.6	5
158	Effect of individual and combined exposure of Fe2O3 nanoparticles and oxytetracycline on their bioaccumulation by rice (Oryza sativa L.). Journal of Soils and Sediments, 2019, 19, 2459-2471.	1.5	5
159	Investigation on parameters optimization to produce hydrochar without carbohydrate carbon. Science of the Total Environment, 2020, 748, 141354.	3.9	4

160	Rhizosphere effect of different aquatic plants on phosphorus depletion. Frontiers of Environmental Science and Engineering in China, 2008, 2, 274-279.	0.8	2	
161	Changes in the hepatitis B surface antibody in childhood acute lymphocytic leukaemia survivors after treatment with the CCLG-ALL 2008 protocol. Clinical and Experimental Immunology, 2020, 203, 80-86.	1.1	2	
162	Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by	4.2	2	

Uу 162 various fractions of humic acid from a single soil. Chemosphere, 2021, 277, 130259.

#	Article	IF	CITATIONS
163	Heteroaggregation between graphene oxide and titanium dioxide particles of different shapes in aqueous phase. Journal of Hazardous Materials, 2022, 428, 128146.	6.5	2
164	Analysis of Material Properties with Biochar Improve Indian Mustard (<i>Brassica) Tj ETQq0 0 0 rgBT /Overl</i>		50 707 Td (jur
	239-242.	0.2	1

165	Fate and Effects of Engineered Nanomaterials in Agricultural Systems. Nanotechnology in the Life Sciences, 2021, , 269-292.	0.4	0
-----	--	-----	---