James L Smialek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9245377/publications.pdf

Version: 2024-02-01

90 4,854 38 68
papers citations h-index g-index

91 91 91 1645 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Alumina Scale Adhesion Mechanisms: A Retrospective Assessment. Oxidation of Metals, 2022, 97, 1-50.	1.0	17
2	Origins of a Low-Sulfur Superalloy Al2O3 Scale Adhesion Map. Crystals, 2021, 11, 60.	1.0	9
3	Diffusional Limits of Superalloy Desulfurization by Hydrogen Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2698.	1.1	O
4	Cyclic oxidation of alloy 718 produced by additive manufacturing compared to a wrought-718 alloy. Corrosion Science, 2021, 192, 109804.	3.0	18
5	Durability of YSZ coated Ti 2 AlC in 1300°C high velocity burner rig tests. Journal of the American Ceramic Society, 2020, 103, 7014-7030.	1.9	9
6	Relative Ti2AlC Scale Volatility under 1300 °C Combustion Conditions. Coatings, 2020, 10, 142.	1.2	9
7	Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 782-792.	1.1	50
8	Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 119-129.	2.6	42
9	Low Temperature Hot Corrosion Screening of Single Crystal Superalloys. Materials, 2018, 11, 2098.	1.3	2
10	Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Stephan Stecura â€. Coatings, 2018, 8, 255.	1.2	41
11	Type II Hot Corrosion Screening Tests of a Cr2AlC MAX Phase Compound. Oxidation of Metals, 2018, 90, 555-570.	1.0	11
12	Investigation of Na ₂ SO ₄ Deposit Induced Corrosion of Cr, Al, C Binary and Ternary Thin Film Coatings on Ni-201. Journal of the Electrochemical Society, 2017, 164, C218-C223.	1.3	8
13	Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. Journal of the European Ceramic Society, 2017, 37, 23-34.	2.8	27
14	Compositional effects on the cyclic oxidation resistance of conventional superalloys. Materials at High Temperatures, 2016, 33, 489-500.	0.5	11
15	Oxidative durability of TBCs on Ti2AlC MAX phase substrates. Surface and Coatings Technology, 2016, 285, 77-86.	2.2	31
16	Interfacial reactions of a MAX phase/superalloy hybrid. Surface and Interface Analysis, 2015, 47, 844-853.	0.8	23
17	Cyclic Oxidation of High Mo, Reduced Density Superalloys. Metals, 2015, 5, 2165-2185.	1.0	16
18	Hydrogen in metals studied by Thermal Desorption Spectroscopy (TDS). Corrosion Science, 2015, 93, 324-326.	3.0	20

#	Article	IF	Citations
19	Kinetic Aspects of Ti2AlC MAX Phase Oxidation. Oxidation of Metals, 2015, 83, 351-366.	1.0	55
20	Compiled furnace cyclic lives of EB-PVD thermal barrier coatings. Surface and Coatings Technology, 2015, 276, 31-38.	2.2	37
21	Corrosion of copper in distilled water without O2 and the detection of produced hydrogen. Corrosion Science, 2015, 95, 162-167.	3.0	35
22	Oxygen diffusivity in alumina scales grown on Al-MAX phases. Corrosion Science, 2015, 91, 281-286.	3.0	52
23	On the growth of Al2O3 scales. Acta Materialia, 2013, 61, 6670-6683.	3.8	140
24	Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys. ECS Transactions, 2012, 41, 127-135.	0.3	5
25	Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2325-2341.	1.1	17
26	Alumina Scale Formation: A New Perspective. Journal of the American Ceramic Society, 2011, 94, s146.	1.9	131
27	Erratum to "Alumina Scale Formation: A New Perspective― Journal of the American Ceramic Society, 2011, 94, 2698-2698.	1.9	9
28	Moisture-Induced TBC Spallation on Turbine Blade Samples. Surface and Coatings Technology, 2011, 206, 1577-1585.	2.2	19
29	Hydrogen and moisture-induced scale spallation: Cathodic descaling of a single crystal superalloy. Electrochimica Acta, 2011, 56, 1823-1834.	2.6	6
30	Comparative Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy. Oxidation of Metals, 2010, 74, 125-144.	1.0	11
31	Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating. Oxidation of Metals, 2009, 72, 259-278.	1.0	8
32	Oxidation of FeCrAlY Fibers at Low Oxygen Potentials. Oxidation of Metals, 2008, 69, 343-358.	1.0	2
33	Moisture-induced delamination video of an oxidized thermal barrier coating. Scripta Materialia, 2008, 59, 67-70.	2.6	18
34	Thermally grown Al2O3 on a H2-annealed Fe3Al alloy: Stress evolution and film adhesion. Acta Materialia, 2007, 55, 5601-5613.	3.8	28
35	Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales. Jom, 2006, 58, 29-35.	0.9	31
36	Cyclic Oxidation Modeling and Life Prediction. Materials Science Forum, 2004, 461-464, 663-670.	0.3	9

#	Article	lF	CITATIONS
37	Improved oxidation life of segmented plasma sprayed 8YSZ thermal barrier coatings. Journal of Thermal Spray Technology, 2004, 13, 66-75.	1.6	18
38	Universal characteristics of an interfacial spalling cyclic oxidation model. Acta Materialia, 2004, 52, 2111-2121.	3.8	24
39	A deterministic interfacial cyclic oxidation spalling model. Acta Materialia, 2003, 51, 469-483.	3.8	49
40	Delayed alumina scale spallation on Rene'N5+Y: moisture effects and acoustic emission. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 332, 11-24.	2.6	34
41	COSP for Windowsâ€"Strategies for Rapid Analyses of Cyclic-Oxidation Behavior. Oxidation of Metals, 2002, 57, 559-581.	1.0	52
42	Advances in the oxidation resistance of high-temperature turbine materials. Surface and Interface Analysis, 2001, 31, 582-592.	0.8	33
43	The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys. Oxidation of Metals, 2001, 55, 75-86.	1.0	18
44	Oxidative recession, sulfur release, and Al2O3 spallation for Y-doped alloys. Scripta Materialia, 2001, 45, 1327-1333.	2.6	9
45	Optimizing Scale Adhesion on Single Crystal Superalloys. Materials Science Forum, 2001, 369-372, 459-466.	0.3	46
46	Non-protective alumina growth in sulfur-doped NiAl(Zr). Materials at High Temperatures, 2000, 17, 71-77.	0.5	6
47	Long Term Oxidation of Model and Engineering TiAl Alloys. Materials Research Society Symposia Proceedings, 2000, 646, 444.	0.1	4
48	Maintaining adhesion of protective Al2O3 scales. Jom, 2000, 52, 22-25.	0.9	47
49	The effect of H2-anneal on the adhesion of Al2O3scales on a Fe3Al-based alloy. Materials at High Temperatures, 2000, 17, 79-85.	0.5	18
50	SiC and Si3N4 recession due to SiO2 scale volatility under combustor conditions. Advanced Composite Materials, 1999, 8, 33-45.	1.0	148
51	SiC Recession Caused by SiO ₂ Scale Volatility under Combustion Conditions: II, Thermodynamics and Gaseousâ€Diffusion Model. Journal of the American Ceramic Society, 1999, 82, 1826-1834.	1.9	296
52	SiC Recession Caused by SiO ₂ Scale Volatility under Combustion Conditions: I, Experimental Results and Empirical Model. Journal of the American Ceramic Society, 1999, 82, 1817-1825.	1.9	254
53	Oxidation and Corrosion of Silicon-Based Ceramics and Composites*. Materials Science Forum, 1997, 251-254, 817-832.	0.3	13
54	The Effects of Reactive Element Additions, Sulfur Removal, and Specimen Thickness on the Oxidation Behaviour of Alumina-Forming Ni-and Fe-Base Alloys. Materials Science Forum, 1997, 251-254, 405-412.	0.3	9

#	Article	IF	CITATIONS
55	The role of Cr in promoting protective alumina scale formation by γ-based Ti_Al_Cr alloys— II. Oxidation behavior in air. Acta Materialia, 1997, 45, 2371-2382.	3.8	100
56	The role of Cr in promoting protective alumina scale formation by γ-based Ti_Al_Cr alloysâ€"l. Compatibility with alumina and oxidation behavior in oxygen. Acta Materialia, 1997, 45, 2357-2369.	3.8	97
57	The oxidation and protection of gamma titanium aluminides. Jom, 1996, 48, 46-50.	0.9	177
58	Oxidation Resistance and Critical Sulfur Content of Single Crystal Superalloys. , 1996, , .		2
59	The effect of surface condition and sulfur on the environmental resistance of airfoils. Oxidation of Metals, 1995, 43, 1-23.	1.0	20
60	Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys: a review. Thin Solid Films, 1994, 253, 285-292.	0.8	133
61	Turbine airfoil degradation in the persian gulf war. Jom, 1994, 46, 39-41.	0.9	97
62	Oxidation behaviour of TiAl3 coatings and alloys. Corrosion Science, 1993, 35, 1199-1208.	3.0	66
63	Chromium and Reactive Element Modified Aluminide Diffusion Coatings on Superalloys: Environmental Testing. Journal of the Electrochemical Society, 1993, 140, 1191-1203.	1.3	41
64	Effect of sulfur removal on Al2O3 scale adhesion. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 739-752.	1.4	128
65	Evidence from Transmission Electron Microscopy for an Oxynitride Layer in Oxidized Si3 N 4. Journal of the Electrochemical Society, 1991, 138, L51-L53.	1.3	32
66	Burner Rig Hot Corrosion of Silicon Carbide and Silicon Nitride. Journal of the American Ceramic Society, 1990, 73, 303-311.	1.9	46
67	Oxidation behavior of FeAl+Hf, Zr, B. Oxidation of Metals, 1990, 34, 259-275.	1.0	95
68	Cyclic oxidation of aluminide coatings on Ti3Al+Nb. Scripta Metallurgica Et Materialia, 1990, 24, 1291-1296.	1.0	70
69	Sulfur at nickel-alumina interfaces. Surface Science, 1990, 230, 175-183.	0.8	42
70	Effect of the?-?-Al2O3 transformation on the oxidation behavior of?-NiAl + Zr. Oxidation of Metals, 1989, 31, 275-304.	1.0	406
71	Adherent Al2O3 scales formed on undoped nicrai alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1987, 18, 164-167.	1.4	126
72	Multielement Mapping of α-SiC by Scanning Auger Microscopy. Advanced Ceramic Materials, 1987, 2, 773-779.	2.3	35

#	Article	IF	Citations
73	Corrosion Pitting of SiC by Molten Salts. Journal of the Electrochemical Society, 1986, 133, 2615-2621.	1.3	47
74	Mechanism of Strength Degradation for Hot Corrosion of alpha-SiC. Journal of the American Ceramic Society, 1986, 69, 741-752.	1.9	84
75	Scanning Auger microscopy of corroded SiC. Journal of Materials Science Letters, 1986, 5, 1122-1124.	0.5	5
76	Burner Rig Corrosion of SiC at 1000°C. Advanced Ceramic Materials, 1986, 1, 154-161.	2.3	41
77	Hot Corrosion of Sintered alpha-Sic at 1000oC. Journal of the American Ceramic Society, 1985, 68, 432-439.	1.9	117
78	Dopant Effect of Yttrium and the Growth and Adherence of Alumina on Nickelâ€Aluminum Alloys. Journal of the Electrochemical Society, 1985, 132, 1695-1701.	1.3	96
79	Structure of transient oxides formed on nicrai alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1983, 14, 2143-2161.	1.4	66
80	New oxidation features in NiCrAl–Zr revealed by an Auger microprobe. Journal of Vacuum Science and Technology, 1982, 20, 1403-1405.	1.9	14
81	180 Tracer studies of Al2O3 scale formation on NiCrAl alloys. Oxidation of Metals, 1982, 17, 429-449.	1.0	181
82	Discussion of "The Relationship Between Oxide Grain Morphology and Growth Mechanisms for Feâ€Crâ€Al and Feâ€Crâ€Alâ€Y Alloys―[F. A. Golightly, F. H. Stott, and G. C. Wood (pp. 1035–1042, Vol. 126, No. 6)]. Jou of the Electrochemical Society, 1979, 126, 2275-2276.	ırnası	18
83	Oxide morphology and spalling model for NiAl. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 309-320.	1.4	178
84	Effects of Diffusion on Aluminum Depletion and Degradation of NiAl Coatings. Journal of the Electrochemical Society, 1974, 121, 800-805.	1.3	56
85	Transformation temperatures of martensite in -phase nickel aluminide. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1973, 4, 1571-1575.	1.0	130
86	Martensite in NiAl oxidation-resistant coatings. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1971, 2, 913-915.	1.4	37
87	Enigmatic Moisture Effects on Al ₂ 0 ₃ Scale and TBC Adhesion. Materials Science Forum, 0, 595-598, 191-198.	0.3	27
88	Predicting Material Consumption by Cyclic Oxidation Spalling Models., 0,, 147-154.		1
89	Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys. Ceramic Engineering and Science Proceedings, 0, , 485-495.	0.1	7
90	Processing of Fused Silicide Coatings for Carbon-Based Materials. Ceramic Engineering and Science Proceedings, 0, , 757-783.	0.1	1