Koffi Pierre Claver Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9245323/publications.pdf Version: 2024-02-01

20 papers	1,716 citations	687335 13 h-index	⁷⁹⁴⁵⁶⁸ 19 g-index
22 all docs	22 docs citations	22 times ranked	3104 citing authors

#	Article	IF	CITATIONS
1	The discharge rate capability of rechargeable Li–O2 batteries. Energy and Environmental Science, 2011, 4, 2999.	30.8	394
2	Thermal Stability of Li ₂ 0 ₂ and Li ₂ 0 for Li-Air Batteries: In Situ XRD and XPS Studies. Journal of the Electrochemical Society, 2013, 160, A824-A831.	2.9	278
3	Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy, 2016, 29, 37-45.	16.0	166
4	Resolving the Discrepancy in Tortuosity Factor Estimation for Li-Ion Battery Electrodes through Micro-Macro Modeling and Experiment. Journal of the Electrochemical Society, 2018, 165, A3403-A3426.	2.9	133
5	Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using <i>operando</i> energy dispersive X-ray diffraction. Energy and Environmental Science, 2019, 12, 656-665.	30.8	126
6	Raman Spectroscopy in Lithium–Oxygen Battery Systems. ChemElectroChem, 2015, 2, 1446-1457.	3.4	123
7	Operando Quantification of (De)Lithiation Behavior of Silicon–Graphite Blended Electrodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1803380.	19.5	117
8	Rate-Dependent Nucleation and Growth of NaO ₂ in Na–O ₂ Batteries. Journal of Physical Chemistry Letters, 2015, 6, 2636-2643.	4.6	108
9	Solid-state activation of Li ₂ O ₂ oxidation kinetics and implications for Li–O ₂ 2 batteries. Energy and Environmental Science, 2015, 8, 2417-2426.	30.8	68
10	The influence of transition metal oxides on the kinetics of Li ₂ O ₂ oxidation in Li–O ₂ batteries: high activity of chromium oxides. Physical Chemistry Chemical Physics, 2014, 16, 2297-2304.	2.8	52
11	Revealing instability and irreversibility in nonaqueous sodium–O ₂ battery chemistry. Chemical Communications, 2016, 52, 9691-9694.	4.1	51
12	Utilization of Cobalt Bis(terpyridine) Metal Complex as Soluble Redox Mediator in Li–O ₂ Batteries. Journal of Physical Chemistry C, 2016, 120, 16290-16297.	3.1	51
13	Lithium Acetylide: A Spectroscopic Marker for Lithium Deposition During Fast Charging of Li-Ion Cells. ACS Applied Energy Materials, 2019, 2, 873-881.	5.1	32
14	Estimating the Diffusion Coefficient of Lithium in Graphite: Extremely Fast Charging and a Comparison of Data Analysis Techniques. Journal of the Electrochemical Society, 2021, 168, 070506.	2.9	12
15	Exploring Li distribution in Li-ion batteries with FIB-SEM and TOF-SIMS. Microscopy and Microanalysis, 2018, 24, 370-371.	0.4	1
16	On the Optimization of Core-Shell Hybrid Cathode Materials for Extreme Fast-Charging: First Principles Computational Insights. Journal of the Electrochemical Society, 2021, 168, 020503.	2.9	1
17	(Invited) Lithium-Ion Transport in Ncm Oxides: Effect of Crystallographic Evolution during Delithiation. ECS Meeting Abstracts, 2017, MA2017-02, 223-223.	0.0	1
18	On the Optimization of Core-Shell Hybrid Cathode Materials for Extreme Fast-Charging: First Principles Computational Insights. ECS Meeting Abstracts, 2021, MA2021-01, 59-59.	0.0	0

#	Article	IF	CITATIONS
19	In-Operando EDXRD of Graphite and Silicon-Graphite Electrodes in Lithium-Ion Cells. ECS Meeting Abstracts, 2017, , .	0.0	0
20	For Battery Safety Sake: Operando Quantification of Lithium Concentration Gradients in the Graphite Anode of Li-Ion Cells Using Synchrotron Energy Dispersive X-Ray Diffraction. ECS Meeting Abstracts, 2019, , .	0.0	0