Gregory Salitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9244843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges in the development of advanced Li-ion batteries: a review. Energy and Environmental Science, 2011, 4, 3243.	15.6	5,644
2	On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of the Electrochemical Society, 2009, 156, A694.	1.3	1,238
3	Review on Liâ€Sulfur Battery Systems: an Integral Perspective. Advanced Energy Materials, 2015, 5, 1500212.	10.2	641
4	On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today, 2014, 17, 110-121.	8.3	501
5	Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution. ACS Energy Letters, 2017, 2, 1321-1326.	8.8	372
6	Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1337-1345.	8.8	350
7	Ion Sieving Effects in the Electrical Double Layer of Porous Carbon Electrodes:  Estimating Effective Ion Size in Electrolytic Solutions. Journal of Physical Chemistry B, 2001, 105, 6880-6887.	1.2	323
8	In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium. Journal of Physical Chemistry C, 2007, 111, 11437-11444.	1.5	206
9	The Effect of Interactions and Reduction Products of LiNO ₃ , the Anti-Shuttle Agent, in Li-S Battery Systems. Journal of the Electrochemical Society, 2015, 162, A470-A473.	1.3	179
10	Fluoroethylene Carbonate as an Important Component in Electrolyte Solutions for High-Voltage Lithium Batteries: Role of Surface Chemistry on the Cathode. Langmuir, 2014, 30, 7414-7424.	1.6	166
11	Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions. Journal of the Electrochemical Society, 2015, 162, A2424-A2438.	1.3	137
12	Leaching Chemistry and the Performance of the Mo6S8Cathodes in Rechargeable Mg Batteries. Chemistry of Materials, 2004, 16, 2832-2838.	3.2	100
13	Assessing the Solvation Numbers of Electrolytic Ions Confined in Carbon Nanopores under Dynamic Charging Conditions. Journal of Physical Chemistry Letters, 2011, 2, 120-124.	2.1	83
14	High-Performance Cells Containing Lithium Metal Anodes, LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading. ACS Applied Materials & amp: Interfaces 2018 10 19773-19782	4.0	77
15	High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents. Journal of the American Chemical Society, 2021, 143, 21161-21176.	6.6	69
16	New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNi _x Co _y Mn _z O ₂ Cathodes and Beyond Them. Journal of the Electrochemical Society, 2019, 166, A5265-A5274.	1.3	38
17	In Situ Tracking of Ion Insertion in Iron Phosphate Olivine Electrodes via Electrochemical Quartz Crystal Admittance. Journal of Physical Chemistry C, 2013, 117, 1247-1256.	1.5	37
18	High-Performance LiNiO ₂ Cathodes with Practical Loading Cycled with Li metal Anodes in Fluoroethylene Carbonate-Based Electrolyte Solution. ACS Applied Energy Materials, 2018, 1, 2600-2607.	2.5	36

GREGORY SALITRA

#	Article	IF	CITATIONS
19	Collective Phase Transition Dynamics in Microarray Composite Li _{<i>x</i>} FePO ₄ Electrodes Tracked by in Situ Electrochemical Quartz Crystal Admittance. Journal of Physical Chemistry C, 2013, 117, 15505-15514.	1.5	35
20	Evaluating the High-Voltage Stability of Conductive Carbon and Ethylene Carbonate with Various Lithium Salts. Journal of the Electrochemical Society, 2020, 167, 160522.	1.3	34
21	Proton-Selective Environment in the Pores of Activated Molecular Sieving Carbon Electrodes. Journal of Physical Chemistry B, 2002, 106, 10128-10134.	1.2	31
22	An Advanced Lithium Ion Battery Based on Amorphous Silicon Film Anode and Integrated xLi2MnO3.(1-x)LiNiyMnzCo1-y-zO2 Cathode. ECS Electrochemistry Letters, 2013, 2, A84-A87.	1.9	30
23	Highâ€Performance Lithium–Sulfur Batteries Based on Ionicâ€Liquid Electrolytes with Bis(fluorolsufonyl)imide Anions and Sulfurâ€Encapsulated Highly Disordered Activated Carbon. ChemElectroChem, 2014, 1, 1492-1496.	1.7	21
24	Improved Performance of Li-metalâ^£LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cells with High-Loading Cathodes and Small Amounts of Electrolyte Solutions Containing Fluorinated Carbonates at 30 °C–55 °C. Journal of the Electrochemical Society, 2020, 167, 070509.	1.3	19
25	Review on Engineering and Characterization of Activated Carbon Electrodes for Electrochemical Double Layer Capacitors and Separation Processes. Israel Journal of Chemistry, 2008, 48, 287-303.	1.0	17
26	Electrochemical quartz crystal admittance studies of ion adsorption on nanoporous composite carbon electrodes in aprotic solutions. Journal of Solid State Electrochemistry, 2014, 18, 1335-1344.	1.2	10
27	SiO ₂ -Modified Separators: Stability in LiPF ₆ -Containing Electrolyte Solutions and Effect on Cycling Performance of Li Batteries. Journal of the Electrochemical Society, 2019, 166, A1685-A1691.	1.3	10
28	Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Li Metal Cells with Practical Loading at 30 Degrees C and Elevated Temperatures. Journal of the Electrochemical Society, 2019, 166, A2834-A2839.	1.3	8
29	The effects of geometry on magnetic response of elliptical PHE sensors. Journal of Applied Physics, 2010, 107, 09E716.	1.1	4