
Jiwang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9244779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425, 836-841.	13.7	2,633
2	BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nature Genetics, 2004, 36, 1117-1121.	9.4	948
3	PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 2006, 441, 518-522.	13.7	767
4	BMP signaling and stem cell regulation. Developmental Biology, 2005, 284, 1-11.	0.9	197
5	Bone Morphogenetic Protein Signaling Inhibits Hair Follicle Anagen Induction by Restricting Epithelial Stem/Progenitor Cell Activation and Expansion. Stem Cells, 2006, 24, 2826-2839.	1.4	147
6	miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nature Communications, 2012, 3, 688.	5.8	138
7	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	5.8	113
8	Stem Cell Niche: Microenvironment and Beyond. Journal of Biological Chemistry, 2008, 283, 9499-9503.	1.6	112
9	TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. Journal of Experimental Medicine, 2008, 205, 1611-1619.	4.2	105
10	Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell, 2017, 168, 59-72.e13.	13.5	99
11	Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. Journal of Experimental Medicine, 2014, 211, 1093-1108.	4.2	80
12	Osteopontin—A Master Regulator of Epithelial-Mesenchymal Transition. Journal of Clinical Medicine, 2016, 5, 39.	1.0	80
13	Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 2015, 126, 2005-2015.	0.6	65
14	FAK Mediates a Compensatory Survival Signal Parallel to PI3K-AKT in PTEN-Null T-ALL Cells. Cell Reports, 2015, 10, 2055-2068.	2.9	46
15	Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. Journal of Hematology and Oncology, 2020, 13, 157.	6.9	41
16	TNF-α/Fas-RIP-1–induced cell death signaling separates murine hematopoietic stem cells/progenitors into 2 distinct populations. Blood, 2011, 118, 6057-6067.	0.6	36
17	The role of TBK1 in cancer pathogenesis and anticancer immunity. Journal of Experimental and Clinical Cancer Research, 2022, 41, 135.	3.5	36
18	An MAPK-dependent pathway induces epithelial-mesenchymal transition via Twist activation in human breast cancer cell lines. Surgery, 2013, 154, 404-410.	1.0	35

JIWANG ZHANG

#	Article	IF	CITATIONS
19	Sensitizing leukemia stem cells to NF-κB inhibitor treatment <i>in vivo</i> by inactivation of both TNF and IL-1 signaling. Oncotarget, 2017, 8, 8420-8435.	0.8	29
20	Alcohol Inhibits Osteopontin-dependent Transforming Growth Factor-β1 Expression in Human Mesenchymal Stem Cells. Journal of Biological Chemistry, 2015, 290, 9959-9973.	1.6	27
21	Mechanisms that regulate the activities of TET proteins. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	27
22	Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Frontiers of Medicine, 2015, 9, 288-303.	1.5	26
23	High-risk disease in newly diagnosed multiple myeloma: beyond the R-ISS and IMWG definitions. Blood Cancer Journal, 2022, 12, .	2.8	26
24	C-Myc Is a Major Target of Rbm15 in the Regulation of Hematopoietic Stem Cell and Megakaryocyte Development. Blood, 2008, 112, 610-610.	0.6	24
25	p27kip1 maintains a subset of leukemia stem cells in the quiescent state in murine MLLâ€leukemia. Molecular Oncology, 2013, 7, 1069-1082.	2.1	23
26	Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice. Blood, 2021, 137, 610-623.	0.6	23
27	RIPK3 signaling and its role in the pathogenesis of cancers. Cellular and Molecular Life Sciences, 2021, 78, 7199-7217.	2.4	22
28	TGF-β–Activated Kinase 1 Is Crucial in Podocyte Differentiation and Glomerular Capillary Formation. Journal of the American Society of Nephrology: JASN, 2014, 25, 1966-1978.	3.0	17
29	Necroptosis in spontaneously-mutated hematopoietic cells induces autoimmune bone marrow failure in mice. Haematologica, 2017, 102, 295-307.	1.7	13
30	HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Research, 2021, 49, 9783-9798.	6.5	12
31	Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells, 2016, 34, 2130-2144.	1.4	11
32	In Vitro Expansion of Hematopoietic Stem Cells by Inhibition of Both GSK3 and p38 Signaling. Stem Cells and Development, 2019, 28, 1486-1497.	1.1	8
33	Myc-Miz-1 signaling promotes self-renewal of leukemia stem cells by repressing Cebpα and Cebpδ. Blood, 2020, 135, 1133-1145.	0.6	8
34	Ripk3 signaling regulates HSCs during stress and represses radiation-induced leukemia in mice. Stem Cell Reports, 2022, 17, 1428-1441.	2.3	6
35	The Synergistic Repressive Effect of NF-κB and JNK Inhibitor on the Clonogenic Capacity of Jurkat Leukemia Cells. PLoS ONE, 2014, 9, e115490.	1.1	5
36	SIRT2 regulates proliferation and chemotherapy response of MLL-ENL-driven acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2022, 596, 36-42.	1.0	5

JIWANG ZHANG

#	Article	IF	CITATIONS
37	The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Translational Oncology, 2022, 22, 101448.	1.7	5
38	The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Reviews and Reports, 2021, 17, 2059-2080.	1.7	4
39	Leukemia Stem Cells in the Pathogenesis, Progression, and Treatment of Acute Myeloid Leukemia. Advances in Experimental Medicine and Biology, 2019, 1143, 95-128.	0.8	3
40	Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression. British Journal of Cancer, 2022, 127, 223-236.	2.9	2
41	Overexpression and Knockout of Mir-126 Both Promote Leukemogenesis through Targeting Distinct Gene Signaling. Blood, 2015, 126, 3667-3667.	0.6	1
42	25-year mystery unveiled: Hematopoietic stem cell niche is found. Discovery Medicine, 2003, 3, 55-8.	0.5	1
43	Essential Role for Rbm15 (Ott1) in the Maintenance of Hematopoietic Stem Cell Function and Cell Cycle Control Blood, 2007, 110, 1223-1223.	0.6	0
44	Intercommunication Between C-Myc and PTEN in the Regulation of Hematopoietic Stem Cell-Niche Interactions and Hematopoietic Progenitor Cell Lineage Commitment Blood, 2008, 112, 1408-1408.	0.6	0
45	C-Myc Is Required for Acute but Not for Chronic Hematopoietic Malignances in Pten-Null Mice Blood, 2009, 114, 1632-1632.	0.6	0
46	Focal Adhesion Kinase Inactivation Reduces the Development of Acute Leukemia and Partially Rescues Hematopoietic Stem Cell Defects in Pten-Knockout Mice. Blood, 2012, 120, 864-864.	0.6	0
47	AML Cells Utilize TNF-Driven JNK Signaling As a Critical NF-κB-Independent Survival Signal. Blood, 2013, 122, 2890-2890.	0.6	0
48	Identification of TET1⊣miR-22⊣CREB-MYC Signaling Reveals Potent Tumor-Suppressor Role of Mir-22 in Acute Myeloid Leukemia. Blood, 2014, 124, 886-886.	0.6	0
49	Blocking TNF and IL-1 Sensitizes AML Stem Cells to NF-κB Inhibitor Treatment. Blood, 2014, 124, 2302-2302.	0.6	0
50	Sensitizing Acute Myeloid Leukemia Cells to Interferon-Induced Differentiation By Inhibiting RIP1/RIP3 Necroptotic Pathway. Blood, 2014, 124, 3752-3752.	0.6	0
51	Necroptosis of a Small Subset of Hematopoietic Progenitors Induces Autoimmune Bone Marrow Failure. Blood, 2015, 126, 4784-4784.	0.6	0
52	Identification of Pre-Gmps and Pre-Meps: Two Novel Types of Committed Progenitor Cells in Bone Marrow. Blood, 2021, 138, 3266-3266.	0.6	0
53	Increasing genomic discovery in newly diagnosed multiple myeloma: defining disease biology and its correlation to risk. Annals of Hematology, 2022, , .	0.8	0