Wenjing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924451/publications.pdf

Version: 2024-02-01

		36271	12585
149	17,979	51	132
papers	citations	h-index	g-index
150	150	150	22823
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Largeâ€Area MoS ₂ Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012, 24, 2320-2325.	11.1	2,956
2	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	4.5	1,749
3	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	15.6	970
4	Highâ€Gain Phototransistors Based on a CVD MoS ₂ Monolayer. Advanced Materials, 2013, 25, 3456-3461.	11.1	891
5	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	1.6	771
6	Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>_x</i> Grown on Grapheneâ€Protected 3D Ni Foams. Advanced Materials, 2013, 25, 756-760.	11.1	693
7	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4, 6637.	2.8	621
8	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano, 2014, 8, 8582-8590.	7.3	515
9	Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials, 2009, 21, 5674-5680.	3.2	476
10	Role of Metal Contacts in High-Performance Phototransistors Based on WSe ₂ Monolayers. ACS Nano, 2014, 8, 8653-8661.	7.3	380
11	Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 2015, 6, 6298.	5.8	358
12	High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodetectors for Optical Communication Applications. Advanced Materials, 2018, 30, e1803422.	11.1	342
13	Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011, 11, 3612-3616.	4.5	302
14	Graphene/MoS ₂ Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Advanced Materials, 2014, 26, 4838-4844.	11.1	290
15	Spectroscopic Signatures for Interlayer Coupling in MoS ₂ –WSe ₂ van der Waals Stacking. ACS Nano, 2014, 8, 9649-9656.	7.3	288
16	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	13.3	280
17	Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 2013, 7, 6522-6532.	7.3	264
18	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	5.8	244

#	Article	IF	Citations
19	Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano, 2010, 4, 5285-5292.	7.3	242
20	Highâ€Performance, Room Temperature, Ultraâ€Broadband Photodetectors Based on Airâ€6table PdSe ₂ . Advanced Materials, 2019, 31, e1807609.	11.1	223
21	Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano, 2011, 5, 7517-7524.	7.3	222
22	Van der Waals stacked 2D layered materials for optoelectronics. 2D Materials, 2016, 3, 022001.	2.0	213
23	Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 2010, 12, 2164.	1.3	176
24	Poly(2â€Oxazoline)â€Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angewandte Chemie - International Edition, 2020, 59, 6412-6419.	7.2	162
25	Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Scientific Reports, 2014, 4, 5893.	1.6	147
26	Photoelectrical Response in Single‣ayer Graphene Transistors. Small, 2009, 5, 2005-2011.	5.2	141
27	One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nature Communications, 2021, 12, 709.	5.8	137
28	Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS ₂ Nanosheets. ACS Nano, 2020, 14, 5600-5608.	7.3	135
29	Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. Journal of the American Chemical Society, 2019, 141, 16772-16780.	6.6	133
30	Stable, High‧ensitivity and Fastâ€Response Photodetectors Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Films. Advanced Optical Materials, 2019, 7, 1801732.	3.6	126
31	Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nature Electronics, 2020, 3, 156-164.	13.1	126
32	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	8.2	116
33	Single Atomic Vacancy Catalysis. ACS Nano, 2019, 13, 9958-9964.	7.3	111
34	Converting Graphene Oxide Monolayers into Boron Carbonitride Nanosheets by Substitutional Doping. Small, 2012, 8, 1384-1391.	5.2	101
35	Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nature Communications, 2021, 12, 5898.	5.8	97
36	Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano, 2019, 13, 8312-8319.	7.3	94

#	Article	IF	CITATIONS
37	Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation. Advanced Functional Materials, 2021, 31, 2101036.	7.8	90
38	Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides. ACS Nano, 2016, 10, 2476-2484.	7.3	87
39	Phase Identification and Strong Second Harmonic Generation in Pure Îμ-InSe and Its Alloys. Nano Letters, 2019, 19, 2634-2640.	4.5	86
40	Host defense peptide mimicking poly- \hat{l}^2 -peptides with fast, potent and broad spectrum antibacterial activities. Biomaterials Science, 2019, 7, 2144-2151.	2.6	83
41	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	5.2	81
42	Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nature Communications, 2017, 8, 486.	5.8	75
43	Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC Advances, 2012, 2, 111-115.	1.7	72
44	Strong Interlayer Transition in Fewâ€Layer InSe/PdSe ₂ van der Waals Heterostructure for Nearâ€Infrared Photodetection. Advanced Functional Materials, 2021, 31, 2104143.	7.8	69
45	Multi-heteroatom-doped hollow carbon tubes as robust electrocatalysts for the oxygen reduction reaction, oxygen and hydrogen evolution reaction. Chemical Engineering Journal, 2021, 418, 129321.	6.6	61
46	Oneâ€Step Formation of a Single Atomicâ€Layer Transistor by the Selective Fluorination of a Graphene Film. Small, 2014, 10, 989-997.	5.2	59
47	Two-step fabrication of single-layer rectangular SnSe flakes. 2D Materials, 2017, 4, 021026.	2.0	57
48	Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie - International Edition, 2021, 60, 8441-8445.	7.2	57
49	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie - International Edition, 2020, 59, 9586-9593.	7.2	56
50	Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide. Nano Letters, 2016, 16, 3682-3688.	4.5	55
51	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	1.5	54
52	Performance Improvement by Ozone Treatment of 2D PdSe ₂ . ACS Nano, 2020, 14, 5668-5677.	7.3	54
53	Dual mechanism \hat{I}^2 -amino acid polymers promoting cell adhesion. Nature Communications, 2021, 12, 562.	5.8	54
54	Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS). Scientific Reports, 2016, 6, 34599.	1.6	52

#	Article	IF	Citations
55	Waterâ€Insensitive Synthesis of Polyâ€Î²â€Peptides with Defined Architecture. Angewandte Chemie - International Edition, 2020, 59, 7240-7244.	7.2	50
56	Fabry–Perot Cavity-Enhanced Optical Absorption in Ultrasensitive Tunable Photodiodes Based on Hybrid 2D Materials. Nano Letters, 2017, 17, 7593-7598.	4.5	48
57	Mumps virus infection disrupts bloodâ€ŧestis barrier through the induction of TNFâ€ἷ± in Sertoli cells. FASEB Journal, 2019, 33, 12528-12540.	0.2	47
58	Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Research, 2020, 13, 3439-3444.	5.8	47
59	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. Carbon, 2012, 50, 1517-1522.	5.4	45
60	Siteâ€6elective Bi ₂ Te ₃ â€"FeTe ₂ Heterostructure as a Broadband Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900409.	4.4	43
61	Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction. Nanotechnology, 2005, 16, 2134-2137.	1.3	42
62	Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration. Scientific Reports, 2016, 6, 23379.	1.6	39
63	Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette. Small, 2012, 8, 43-46.	5.2	38
64	Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway. Acta Biomaterialia, 2016, 33, 290-300.	4.1	37
65	Defect Reconstruction Triggered Full-Color Photodetection in Single Nanowire Phototransistor. ACS Photonics, 2019, 6, 886-894.	3.2	37
66	Short Guanidiniumâ€Functionalized Poly(2â€oxazoline)s Displaying Potent Therapeutic Efficacy on Drugâ€Resistant Fungal Infections. Angewandte Chemie - International Edition, 2022, 61, e202200778.	7.2	37
67	Continuously Tuning Electronic Properties of Few-Layer Molybdenum Ditelluride with <i>in Situ</i> Aluminum Modification toward Ultrahigh Gain Complementary Inverters. ACS Nano, 2019, 13, 9464-9472.	7.3	36
68	Defectâ€Assisted Anchoring of Pt Single Atoms on MoS ₂ Nanosheets Produces Highâ€Performance Catalyst for Industrial Hydrogen Evolution Reaction. Small, 2022, 18, e2104824.	5.2	36
69	Reducing the Schottky barrier between few-layer MoTe ₂ and gold. 2D Materials, 2017, 4, 045016.	2.0	35
70	Significant photoluminescence enhancement in WS ₂ monolayers through Na ₂ S treatment. Nanoscale, 2018, 10, 6105-6112.	2.8	35
71	Highâ€Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Advanced Materials, 2019, 31, e1904243.	11.1	35
72	Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nature Communications, 2013, 4, 2074.	5.8	34

#	Article	IF	CITATIONS
73	Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS Nano, 2020, 14, 11373-11382.	7.3	34
74	Discovering the forbidden Raman modes at the edges of layered materials. Science Advances, 2018, 4, eaau6252.	4.7	33
75	Multiphoton absorption in low-dimensional cesium copper iodide single crystals. Journal of Materials Chemistry C, 2020, 8, 16923-16929.	2.7	33
76	Bio-inspired poly-DL-serine materials resist the foreign-body response. Nature Communications, 2021, 12, 5327.	5.8	33
77	Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method. Chemical Science, 2019, 10, 7779-7787.	3.7	30
78	A multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes. Frontiers in Neuroendocrinology, 2021, 62, 100915.	2.5	28
79	Diverse Structures and Magnetic Properties in Nonlayered Monolayer Chromium Selenide. Journal of Physical Chemistry Letters, 2021, 12, 7752-7760.	2.1	28
80	Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. Journal of Materials Chemistry B, 2020, 8, 9173-9196.	2.9	27
81	Ultrathin Single rystalline 2D Perovskite Photoconductor for Highâ€Performance Narrowband and Wide Linear Dynamic Range Photodetection. Small, 2020, 16, e2005626.	5.2	26
82	Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods. Journal of Physical Chemistry Letters, 2020, 11, 4817-4825.	2.1	26
83	Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. Advanced Materials, 2022, 34, e2200734.	11.1	25
84	MoS _x -coated NbS ₂ nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.	2.8	24
85	Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomaterialia, 2018, 80, 108-120.	4.1	24
86	Unraveling High‥ield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science, 2019, 6, 1802093.	5.6	23
87	An alpha/beta chimeric peptide molecular brush for eradicating MRSA biofilms and persister cells to mitigate antimicrobial resistance. Biomaterials Science, 2020, 8, 6883-6889.	2.6	23
88	Calcium ion-induced formation of \hat{l}^2 -sheet/-turn structure leading to alteration of osteogenic activity of bone morphogenetic protein-2. Scientific Reports, 2015, 5, 12694.	1.6	22
89	Influence of a substrate on ultrafast interfacial charge transfer and dynamical interlayer excitons in monolayer WSe ₂ /graphene heterostructures. Nanoscale, 2020, 12, 2498-2506.	2.8	22
90	Facile p-Doping of Few-Layer MoTe ₂ by Controllable Surface Oxidation toward High-Performance Complementary Devices. ACS Applied Electronic Materials, 2020, 2, 920-926.	2.0	19

#	Article	IF	CITATIONS
91	An Effective Strategy to Develop Potent and Selective Antifungal Agents from Cell Penetrating Peptides in Tackling Drug-Resistant Invasive Fungal Infections. Journal of Medicinal Chemistry, 2022, 65, 7296-7311.	2.9	19
92	Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 15370-15389.	5.2	19
93	Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage. Carbon, 2019, 155, 674-685.	5.4	18
94	Flexible Photodetectors Based on Allâ€Solutionâ€Processed Cu Electrodes and InSe Nanoflakes with High Stabilities. Advanced Functional Materials, 2022, 32, 2108261.	7.8	18
95	Visible to near-infrared photodetector with novel optoelectronic performance based on graphene/S-doped InSe heterostructure on h-BN substrate. Nanoscale, 2020, 12, 19259-19266.	2.8	17
96	Using <i>In Vivo</i> Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS Applied Bio Materials, 2021, 4, 3811-3829.	2.3	16
97	Precise Layerâ€Dependent Electronic Structure of MBEâ€Grown PtSe ₂ . Advanced Electronic Materials, 2021, 7, 2100559.	2.6	16
98	Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 6975-6979.	1.5	15
99	A twoâ€step method for rapid characterization of electroosmotic flows in capillary electrophoresis. Electrophoresis, 2017, 38, 3130-3135.	1.3	15
100	Efficient synthesis of amino acid polymers for protein stabilization. Biomaterials Science, 2019, 7, 3675-3682.	2.6	15
101	The effects of contacts and ambipolar electrical transport in nitrogen doped multiwall carbon nanotubes. Nanotechnology, 2008, 19, 085202.	1.3	14
102	Poly(2â€Oxazoline)â€Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angewandte Chemie, 2020, 132, 6474-6481.	1.6	14
103	The screening of charged impurities in bilayer graphene. New Journal of Physics, 2010, 12, 103037.	1.2	13
104	Observation of Phonon Anomaly at the Armchair Edge of Single-Layer Graphene in Air. ACS Nano, 2011, 5, 3347-3353.	7.3	13
105	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons. Optics Letters, 2018, 43, 2244.	1.7	13
106	Pressureâ€Controlled Structural Symmetry Transition in Layered InSe. Laser and Photonics Reviews, 2019, 13, 1900012.	4.4	13
107	The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes. Surface Science Reports, 2021, 76, 100542.	3.8	13
108	The modulation of terahertz photoconductivity in CVD grown <i>n</i> doped monolayer MoS ₂ with gas adsorption. Journal of Physics Condensed Matter, 2019, 31, 245001.	0.7	12

#	Article	IF	Citations
109	Mobility Capillary Electrophoresis-Restrained Modeling Method for Protein Structure Analysis in Mixtures. Journal of Physical Chemistry B, 2019, 123, 2335-2341.	1.2	12
110	Growth of centimeter-scale single crystal MoO3 ribbons for high performance ultraviolet photodetectors. Applied Physics Letters, 2021, 118, .	1.5	11
111	Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling. ACS Nano, 2019, 13, 14529-14539.	7.3	10
112	Modulation of Electrical Properties with Controllable Local Doping in Multilayer MoTe ₂ Transistors. Advanced Electronic Materials, 2020, 6, 2000532.	2.6	10
113	Roles of Sialic Acid, AXL, and MER Receptor Tyrosine Kinases in Mumps Virus Infection of Mouse Sertoli and Leydig Cells. Frontiers in Microbiology, 2020, 11, 1292.	1.5	9
114	Supramolecular Tiling of a Conformationally Flexible Precursor. Journal of Physical Chemistry Letters, 2022, 13, 2180-2186.	2.1	9
115	Pattern recognition receptor-mediated innate immune responses in seminal vesicle epithelial cell and their impacts on cellular functionâ€. Biology of Reproduction, 2019, 101, 733-747.	1.2	8
116	Synthesis of large-area uniform Si ₂ Te ₃ thin films for p-type electronic devices. Nanoscale, 2020, 12, 11242-11250.	2.8	8
117	Enhanced Performance of Two-Photon Excited Amplified Spontaneous Emission by Cd-Alloyed CsPbBr ₃ Nanocrystals. Inorganic Chemistry, 2022, 61, 4735-4742.	1.9	8
118	Rolling up of 2D nanosheets into 1D Nanoscrolls: Visible-Light-Activated chemiresistors based on surface modified indium selenide with enhanced sensitivity and stability. Chemical Engineering Journal, 2022, 446, 136937.	6.6	8
119	Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie, 2020, 132, 9673-9680.	1.6	7
120	Defect-induced nucleation and epitaxial growth of a MOF-derived hierarchical Mo ₂ C@Co architecture for an efficient hydrogen evolution reaction. RSC Advances, 2020, 10, 13838-13847.	1.7	7
121	Giant Optical Activity and Second Harmonic Generation in 2D Hybrid Copper Halides. Angewandte Chemie, 2021, 133, 8522-8526.	1.6	7
122	Synthesis of 2D anatase TiO ₂ with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS ₂ nanosheets. Journal of Materials Chemistry A, 2022, 10, 13884-13894.	5.2	7
123	Modulation of New Excitons in Transition Metal Dichalcogenideâ€Perovskite Oxide System. Advanced Science, 2019, 6, 1900446.	5.6	6
124	Anisotropic Collective Charge Excitations in Quasimetallic 2D Transitionâ€Metal Dichalcogenides. Advanced Science, 2020, 7, 1902726.	5.6	6
125	Pattern recognition receptor-initiated innate immune responses in mouse prostatic epithelial cells. Biology of Reproduction, 2021, 105, 113-127.	1.2	6
126	Impact of Amine Additives on Perovskite Precursor Aging: A Case Study of Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 5836-5843.	2.1	6

#	Article	IF	CITATIONS
127	Gate voltage dependent characteristics of p–n diodes and bipolar transistors based on multiwall CNx/carbon nanotube intramolecular junctions. Nanotechnology, 2007, 18, 395205.	1.3	5
128	High-Performance Photodetectors Using a 2D MoS ₂ /3D-AlN Structure. ACS Applied Electronic Materials, 2021, 3, 5415-5422.	2.0	5
129	Influence of field evaporation treatment on the field emission properties of carbon nanotubes array. Applied Surface Science, 2010, 256, 3912-3916.	3.1	4
130	Characterization of an Antiviral Component in Human Seminal Plasma. Frontiers in Immunology, 2021, 12, 580454.	2.2	4
131	Solar Water Purification: Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170135.	7.8	4
132	Epitaxial Growth of 2D Ternary Copper–Indium–Selenide Nanoflakes for Highâ€Performance Nearâ€Infrared Photodetectors. Advanced Optical Materials, 0, , 2200033.	3.6	4
133	Optimizing Optical Properties of Hybrid Core/Shell Perovskite Nanocrystals. Inorganic Chemistry Frontiers, 0, , .	3.0	4
134	Host defense peptide mimicking cyclic peptoid polymers exerting strong activity against drug-resistant bacteria. Biomaterials Science, 2022, 10, 4515-4524.	2.6	4
135	Time-related conversion of the carbon nanotube field effect transistor. Applied Physics Letters, 2006, 89, 233507.	1.5	3
136	Ultrabroadband Near-perfect Anisotropic Metamaterial Absorber Based on a Curved Periodic W/TPX Stack. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 67-78.	1.4	3
137	Waterâ€Insensitive Synthesis of Polyâ€Î²â€Peptides with Defined Architecture. Angewandte Chemie, 2020, 132, 7307-7311.	1.6	3
138	Lateral growth of indium(III) selenide nanoribbons and their optoelectronic performance for weak signal detection. Applied Surface Science, 2021, 546, 149166.	3.1	3
139	Short Guanidiniumâ€Functionalized Poly(2â€oxazoline)s Displaying Potent Therapeutic Efficacy on Drugâ€Resistant Fungal Infections. Angewandte Chemie, 2022, 134, .	1.6	3
140	Distinct neuroanatomic subtypes in antipsychotic-treated patients with schizophrenia classified by the predefined classification in a never-treated sample. Psychoradiology, 2021, 1, 212-224.	1.0	3
141	Bandgap Engineering of Ternary εâ€InSe _{1â^'} <i>_x</i> S <i>_x</i> and εâ€InSe _{1â^'} <i>_y</i> Bingle Crystals for Highâ€Performance Electronics and Optoelectronics. Advanced Optical Materials, 2022, 10, .	3.6	3
142	Low-Dimensional Porous Carbon Networks Using Single-/Triple-Coupling Polycyclic Hydrocarbon Precursors. ACS Nano, 2022, 16, 9843-9851.	7.3	3
143	Innentitelbild: Poly(2â€Oxazoline)â€Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance (Angew. Chem. 16/2020). Angewandte Chemie, 2020, 132, 6354-6354.	1.6	2
144	Selective Chemical Vapor Deposition Growth of WS2/MoS2 Vertical and Lateral Heterostructures on Gold Foils. Nanomaterials, 2022, 12, 1696.	1.9	2

#	Article	IF	CITATIONS
145	Atmospheric Pressure Fabrication of Large-Sized Single-Layer Rectangular SnSe Flakes. Journal of Visualized Experiments, $2018, \ldots$	0.2	1
146	Surface Catalytic Modification of Conjugated Polymer on Low ost Bottom Contact for Improved Injection Efficiency of Organic Transistors. Advanced Electronic Materials, 2019, 5, 1900028.	2.6	1
147	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons: publisher's note. Optics Letters, 2018, 43, 2627.	1.7	O
148	Vibrational coupling effects in the energy redistribution of alkylbenzenes. Journal of Molecular Structure, 2020, 1199, 126966.	1.8	0
149	Vibrational energy redistribution and vibrational dynamics of methanol mixed with Rhodamine 101 dye. Molecular Physics, 2020, 118, e1708490.	0.8	0