Ling-Ling Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92439/publications.pdf

Version: 2024-02-01

346980 445137 4,259 33 22 33 citations h-index g-index papers 34 34 34 7209 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine. Sensors and Actuators B: Chemical, 2022, 357, 131470.	4.0	8
2	Applications of smartphone-based colorimetric biosensors. Biosensors and Bioelectronics: X, 2022, 11, 100173.	0.9	12
3	Synthesis of Renal-Clearable Multicolor Fluorescent Silicon Nanodots for Tumor Imaging and In Vivo H ₂ O ₂ Profiling. Analytical Chemistry, 2022, 94, 9074-9080.	3.2	15
4	Near infrared imaging of intracellular GSH by AuNCs@MnO ₂ coreâ€"shell nanoparticles based on the absorption competition mechanism. Analyst, The, 2021, 146, 5115-5123.	1.7	18
5	Nonradiative Energy Transfer from CsPbBr ₃ Nanocrystals to CdSe/CdS Nanocrystals for Efficient Light Down Conversion. Journal of Physical Chemistry Letters, 2021, 12, 11710-11716.	2.1	4
6	A novel electrochemiluminescence biosensor: Inorganic-organic nanocomposite and ZnCo2O4 as the efficient emitter and accelerator. Sensors and Actuators B: Chemical, 2020, 303, 127222.	4.0	23
7	Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. TrAC - Trends in Analytical Chemistry, 2020, 123, 115745.	5.8	63
8	Size-selected and surface-passivated CsPbBr ₃ perovskite nanocrystals for self-enhanced electrochemiluminescence in aqueous media. Nanoscale, 2020, 12, 7321-7329.	2.8	28
9	An Improved Strategy for High-Quality Cesium Bismuth Bromine Perovskite Quantum Dots with Remarkable Electrochemiluminescence Activities. Analytical Chemistry, 2019, 91, 8607-8614.	3.2	66
10	Sustainable and Selfâ€Enhanced Electrochemiluminescent Ternary Suprastructures Derived from CsPbBr ₃ Perovskite Quantum Dots. Advanced Functional Materials, 2019, 29, 1902533.	7.8	50
11	Oxygen Species on Nitrogen-Doped Carbon Nanosheets as Efficient Active Sites for Multiple Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11678-11688.	4.0	58
12	Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters. Chemical Science, 2018, 9, 6167-6175.	3.7	83
13	A label-free aptasensor for ultrasensitive Pb2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen)32+. Journal of Hazardous Materials, 2018, 359, 121-128.	6.5	50
14	Labelâ€Free Electrochemiluminescence Aptasensor for Highly Sensitive Detection of Acetylcholinesterase Based on Auâ€Nanoparticleâ€Functionalized g ₃ N ₄ Nanohybrid. ChemElectroChem, 2017, 4, 1768-1774.	1.7	27
15	Incorporating Nitrogen-Doped Graphene Quantum Dots and Ni ₃ S ₂ Nanosheets: A Synergistic Electrocatalyst with Highly Enhanced Activity for Overall Water Splitting. Small, 2017, 13, 1700264.	5.2	120
16	Recent Advances in Electrochemiluminescence Analysis. Analytical Chemistry, 2017, 89, 358-371.	3.2	465
17	Hierarchical Nanocarriers for Precisely Regulating the Therapeutic Process via Dual-Mode Controlled Drug Release in Target Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36655-36664.	4.0	12
18	Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films. Analytical Chemistry, 2017, 89, 8212-8216.	3.2	59

#	Article	IF	CITATIONS
19	Fluorescent Gold Nanoclusters: Promising Fluorescent Probes for Sensors and Bioimaging. Journal of Analysis and Testing, 2017, 1 , 1 .	2.5	19
20	A Coldâ€Flow Process for Fabricating a Highâ€Volumetricâ€Energyâ€Density Anode for Lithiumâ€Ion Batteries. Advanced Materials Technologies, 2017, 2, 1600156.	3.0	8
21	Highly luminescent and biocompatible near-infrared core–shell CdSeTe/CdS/C quantum dots for probe labeling tumor cells. Talanta, 2016, 146, 209-215.	2.9	13
22	<i>Helicobacter pylori</i> li>Infection Is Associated with an Increased Risk of Hyperemesis Gravidarum: A Meta-Analysis. Gastroenterology Research and Practice, 2015, 2015, 1-13.	0.7	39
23	Nanomaterial-based activatable imaging probes: from design to biological applications. Chemical Society Reviews, 2015, 44, 7855-7880.	18.7	138
24	CART treatment improves memory and synaptic structure in APP/PS1 mice. Scientific Reports, 2015, 5, 10224.	1.6	33
25	Aptamer/Graphene Quantum Dots Nanocomposite Capped Fluorescent Mesoporous Silica Nanoparticles for Intracellular Drug Delivery and Real-Time Monitoring of Drug Release. Analytical Chemistry, 2015, 87, 11739-11745.	3.2	136
26	Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application. ACS Applied Materials & Interfaces, 2015, 7, 19126-19133.	4.0	16
27	High-Efficient Energy Funneling Based on Electrochemiluminescence Resonance Energy Transfer in Graded-Gap Quantum Dots Bilayers for Immunoassay. Analytical Chemistry, 2014, 86, 3284-3290.	3.2	77
28	Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg ²⁺ . ACS Applied Materials & https://www.acsup.com/sups/2858-2864.	4.0	122
29	Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods. Scientific Reports, 2013, 3, 1529.	1.6	82
30	Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Advances, 2013, 3, 22597.	1.7	47
31	Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015.	2.8	1,295
32	A Facile Microwave Avenue to Electrochemiluminescent Twoâ€Color Graphene Quantum Dots. Advanced Functional Materials, 2012, 22, 2971-2979.	7.8	768
33	Fabrication of Graphene–Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing. Advanced Functional Materials, 2011, 21, 869-878.	7.8	303