Valtencir Zucolotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243833/publications.pdf

Version: 2024-02-01

204 papers 7,298 citations

50566 48 h-index 90395 73 g-index

207 all docs

207 docs citations

times ranked

207

11004 citing authors

#	Article	IF	CITATIONS
1	Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polymers for Advanced Technologies, 2022, 33, 591-600.	1.6	6
2	Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112254.	2.5	58
3	Immunomodulatory properties of nanostructured systems for cancer therapy. Journal of Biomedical Materials Research - Part A, 2022, 110, 1166-1181.	2.1	1
4	TBISTAT: An open-source, wireless portable, electrochemical impedance spectroscopy capable potentiostat for the point-of-care detection of S100B in plasma samples. PLoS ONE, 2022, 17, e0263738.	1.1	7
5	Cancer cell membraneâ€derived nanoparticles block the expression of immune checkpoint proteins on cancer cells and coordinate modulatory activity on immunosuppressive macrophages. Journal of Biomedical Materials Research - Part A, 2022, 110, 1499-1511.	2.1	7
6	Modulation of beta-amyloid aggregation using ascorbic acid. Biochimie, 2022, 200, 36-43.	1.3	4
7	Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. Aquatic Toxicology, 2022, 248, 106199.	1.9	10
8	Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: Implications for targeted theranostics. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 176, 168-179.	2.0	6
9	Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS Applied Bio Materials, 2022, 5, 3371-3383.	2.3	4
10	Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry, 2021, 137, 107685.	2.4	11
11	The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors. Applied Surface Science, 2021, 543, 148698.	3.1	14
12	Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery. Environmental Science and Pollution Research, 2021, 28, 25316-25326.	2.7	3
13	Inorganic Nanoparticles for Biomedical Applications. Nanomedicine and Nanotoxicology, 2021, , 49-72.	0.1	O
14	Electrochemical Immunosensor for the Quantification of S100B at Clinically Relevant Levels Using a Cysteamine Modified Surface. Sensors, 2021, 21, 1929.	2.1	7
15	Difference in lipid cell composition and shaped-based gold nanoparticles induce distinguish pathways in Langmuir monolayers response. Materials Today Communications, 2021, 26, 101831.	0.9	2
16	Near-Infrared Photoactive Theragnostic Gold Nanoflowers for Photoacoustic Imaging and Hyperthermia. ACS Applied Bio Materials, 2021, 4, 6780-6790.	2.3	8
17	Experimental Design to Enhance Dopamine Electrochemical Detection Using Carbon Paste Electrodes. Brazilian Journal of Analytical Chemistry, 2021, 8, 178-197.	0.3	2
18	Orange Trunk Waste-Based Lignin Nanoparticles Encapsulating Curcumin as a Photodynamic Therapy Agent against Liver Cancer. ACS Applied Polymer Materials, 2021, 3, 5061-5072.	2.0	7

#	Article	IF	CITATIONS
19	Doped Plasmonic Zinc Oxide Nanoparticles with Near-Infrared Absorption for Antitumor Activity. ACS Applied Nano Materials, 2021, 4, 9779-9789.	2.4	6
20	Detecting cancer cells with a highly sensitive LbL-based biosensor. Talanta, 2021, 233, 122506.	2.9	6
21	Anti-GPC1-modified mesoporous silica nanoparticles as nanocarriers for combination therapy and targeting of PANC-1 cells. Materials Advances, 2021, 2, 5224-5235.	2.6	6
22	Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. Materials Science and Engineering C, 2020, 107, 110334.	3.8	55
23	Applications of biosensors in Alzheimer's disease diagnosis. Talanta, 2020, 210, 120644.	2.9	74
24	Cancer immunosensor based on apo and holo transferrin binding. Mikrochimica Acta, 2020, 187, 438.	2.5	9
25	Cancer cell membrane-derived nanoparticles improve the activity of gemcitabine and paclitaxel on pancreatic cancer cells and coordinate immunoregulatory properties on professional antigen-presenting cells. Materials Advances, 2020, 1, 1775-1787.	2.6	11
26	Specialty Grand Challenges in Biosensors. Frontiers in Sensors, 2020, 1, .	1.7	8
27	The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata. Environmental Research, 2020, 191, 110133.	3.7	7
28	Is Nanotechnology Helping in the Fight Against COVID-19?. Frontiers in Nanotechnology, 2020, 2, .	2.4	27
29	Investigating the interactions of corona-free SWCNTs and cell membrane models using sum-frequency generation. Soft Matter, 2020, 16, 5711-5717.	1.2	2
30	Fabrication of random and aligned electrospun nanofibers containing graphene oxide for skeletal muscle cells scaffold. Polymers for Advanced Technologies, 2020, 31, 1437-1443.	1.6	23
31	Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery. Fish Physiology and Biochemistry, 2019, 45, 1289-1297.	0.9	24
32	Colorimetric Paper-Based Immunosensor for Simultaneous Determination of Fetuin B and Clusterin toward Early Alzheimer's Diagnosis. ACS Nano, 2019, 13, 13325-13332.	7.3	67
33	Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol, vitamins and glucose. Biosensors and Bioelectronics, 2019, 137, 161-170.	5.3	180
34	Gold nanorods and poly(amido amine) dendrimer thin film for biosensing. Journal of Solid State Electrochemistry, 2019, 23, 1581-1591.	1.2	6
35	Label-free electrochemical DNA biosensor for zika virus identification. Biosensors and Bioelectronics, 2019, 131, 149-155.	5.3	123
36	Photothermia and Activated Drug Release of Natural Cell Membrane Coated Plasmonic Gold Nanorods and Î ² -Lapachone. ACS Applied Bio Materials, 2019, 2, 728-736.	2.3	17

3

#	Article	IF	CITATIONS
37	Controlled Release of Silver Nanoparticles Contained in Photoresponsive Nanogels. ACS Applied Bio Materials, 2019, 2, 644-653.	2.3	23
38	Human macrophage responses to metal-oxide nanoparticles: a review. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 694-703.	1.9	37
39	Chronic toxicity in Ceriodaphnia dubia induced by graphene oxide. Chemosphere, 2018, 190, 218-224.	4.2	54
40	Electrochemical sensor for estriol hormone detection in biological and environmental samples. Journal of Solid State Electrochemistry, 2018, 22, 1431-1438.	1.2	36
41	Gold-based nanospheres and nanorods particles used as theranostic agents: An inÂvitro and inÂvivo toxicology studies. Chemosphere, 2018, 213, 41-52.	4.2	11
42	Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Environmental Pollution, 2018, 243, 723-733.	3.7	41
43	Reaching Biocompatibility with Nanoclays: Eliminating the Cytotoxicity of Ir(III) Complexes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26830-26834.	4.0	17
44	An antibody-based platform for melatonin quantification. Colloids and Surfaces B: Biointerfaces, 2018, 171, 94-100.	2.5	17
45	Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquatic Toxicology, 2017, 186, 11-18.	1.9	89
46	A label-free electrochemical DNA sensor to identify breast cancer susceptibility. Microchemical Journal, 2017, 133, 37-42.	2.3	21
47	Nanomedicine. , 2017, , 71-92.		1
48	Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition. Materials Science and Engineering C, 2017, 74, 382-388.	3.8	10
49	Differences in the Aspect Ratio of Gold Nanorods that Induce Defects in Cell Membrane Models. Langmuir, 2017, 33, 14286-14294.	1.6	14
50	Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. Journal of Electroanalytical Chemistry, 2017, 799, 436-443.	1.9	125
51	Enhancing T $<$ sub $>$ 1 $<$ /sub $>$ magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6960-6965.	3.3	75
52	Nanostructured materials and nanoparticles for point of care (POC) medical biosensors. , 2017, , 229-254.		19
53	Biocompatibility and toxicology effects of graphene oxide in cancer, normal, and primary immune cells. Journal of Biomedical Materials Research - Part A, 2017, 105, 728-736.	2.1	17
54	A Genosensor for Sickle Cell Anemia Trait Determination. Electroanalysis, 2017, 29, 773-777.	1.5	11

#	Article	IF	CITATIONS
55	SÃntese e caracterização de nanopartÃeulas de ouro conjugadas com curcumina e seus efeitos na osteoartrite experimental induzida. Ciencia Rural, 2017, 47, .	0.3	2
56	Efficiency Improvement of Cellulose Derivative Nanocomposite Using Titanium Dioxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 2206-2211.	0.9	2
57	Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds. Sensors and Actuators B: Chemical, 2016, 237, 702-709.	4.0	18
58	Transmembrane Proteinâ€Based Electrochemical Biosensor for Adiponectin Hormone Quantification. ChemElectroChem, 2016, 3, 1006-1011.	1.7	15
59	Potentiometric detection of chemical species by spin-assisted assembly of vanadium pentoxide nanorods. Sensors and Actuators B: Chemical, 2016, 229, 461-465.	4.0	8
60	Synthesis, Physico-Chemical Properties, and Biomedical Applications of Gold Nanorods—A Review. Journal of Biomedical Nanotechnology, 2016, 12, 1136-1158.	0.5	47
61	Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32699-32705.	4.0	38
62	Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation. Drug Delivery and Translational Research, 2016, 6, 526-539.	3.0	7
63	Impedance sensing of DNA hybridization onto nanostructured phthalocyanine-modified electrodes. Electrochimica Acta, 2016, 221, 86-95.	2.6	13
64	Current Challenges in the Commercialization of Nanocolloids. , 2016, , 427-463.		0
65	Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm. Journal of Physics Condensed Matter, 2016, 28, 085302.	0.7	40
66	Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation. Proceedings of SPIE, 2016, , .	0.8	0
67	Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Materials Science and Engineering C, 2016, 58, 97-102.	3.8	58
68	Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 2015, 13, 64.	4.2	183
69	PAMAM dendrimer/gold nanoparticle nanocomposites for a reflection LSPR optical fiber sensor. Proceedings of SPIE, 2015 , , .	0.8	1
70	A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomedical Microdevices, 2015, 17, 3.	1.4	26
71	Electrical Detection of Dengue Biomarker Using Egg Yolk Immunoglobulin as the Biological Recognition Element. Scientific Reports, 2015, 5, 7865.	1.6	50
72	Poly(vinyl alcohol)-coated silver nanoparticles: Activation of neutrophils and nanotoxicology effects in human hepatocarcinoma and mononuclear cells. Environmental Toxicology and Pharmacology, 2015, 39, 614-621.	2.0	37

#	Article	IF	CITATIONS
73	Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine. ACS Applied Materials & Diterfaces, 2015, 7, 4784-4790.	4.0	185
74	Electrochemical sensor for nitric oxide using layered films composed of a polycationic dendrimer and nickel(II) phthalocyaninetetrasulfonate deposited on a carbon fiber electrode. Mikrochimica Acta, 2015, 182, 1079-1087.	2.5	7
75	The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquatic Toxicology, 2015, 166, 29-35.	1.9	115
76	Detection of Leukemic Cells by using Jacalin as the Biorecognition Layer: A New Strategy for the Detection of Circulating Tumor Cells. ChemElectroChem, 2015, 2, 963-969.	1.7	5
77	A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta, 2015, 141, 307-314.	2.9	41
78	The use of dihexadecylphosphate in sensing and biosensing. Sensors and Actuators B: Chemical, 2015, 220, 805-813.	4.0	20
79	Hopping-tunneling model to describe electric charge injection at metal/organic semiconductor heterojunctions. Physica Status Solidi (B): Basic Research, 2015, 252, 404-410.	0.7	6
80	NANOMEDICINA., 2015,, 83-108.		0
81	Nanomiemgel - A Novel Drug Delivery System for Topical Application - In Vitro and In Vivo Evaluation. PLoS ONE, 2014, 9, e115952.	1.1	58
82	Effect of a Silver Nanoparticles Solution on <i>Staphylococcus aureus</i> and <i>Candida</i> spp Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	29
83	Effects of 3,5,3′-Triiodothyroacetic Acid, Nanoencapsulated or Not, on Intact and Atrophic Skin in Rats. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, .	0.8	0
84	Disposable Biosensors for Clinical Diagnosis. Journal of Nanoscience and Nanotechnology, 2014, 14, 378-389.	0.9	65
85	Nanotechnology in medicine: concepts and concerns Quimica Nova, 2014, 37, .	0.3	12
86	Nanostructured Fe3O4 satellite gold nanoparticles to improve biomolecular detection. Sensors and Actuators B: Chemical, 2014, 198, 377-383.	4.0	22
87	Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Materials Science and Engineering C, 2014, 37, 14-19.	3.8	67
88	Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system. Analytical Methods, 2014, 6, 8882-8885.	1.3	15
89	A novel architecture based upon multi-walled carbon nanotubes and ionic liquid to improve the electroanalytical detection of ciprofibrate. Analyst, The, 2014, 139, 3961.	1.7	14
90	Dynamic identification of H2 epitopes from <i>Leishmania (Leishmania) amazonensis</i> cysteine proteinase B with potential immune activity during murine infection. Journal of Molecular Recognition, 2014, 27, 98-105.	1.1	15

#	Article	IF	Citations
91	Electrochemical detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a cobalt oxide film. Sensors and Actuators B: Chemical, 2014, 202, 469-474.	4.0	15
92	Nanostructured Sensors Containing Immobilized Nuclear Receptors for Thyroid Hormone Detection. Journal of Biomedical Nanotechnology, 2014, 10, 744-750.	0.5	3
93	Differential pulse adsorptive stripping voltammetric determination of methotrexate using a functionalized carbon nanotubes-modified glassy carbon electrode. Open Chemistry, 2013, 11, 1837-1843.	1.0	11
94	Nanostructured polyaniline thin films as urea-sensing membranes in field-effect devices. Synthetic Metals, 2013, 175, 108-111.	2.1	21
95	In vitro nanotoxicity of single-walled carbon nanotube–dendrimer nanocomplexes against murine myoblast cells. Toxicology Letters, 2013, 219, 18-25.	0.4	39
96	A Detailed Investigation on the Interactions between Magnetic Nanoparticles and Cell Membrane Models. ACS Applied Materials & Detailed Magnetic Nanoparticles and Cell Membrane Models. ACS Applied Materials & Detailed Magnetic Nanoparticles and Cell Membrane Models.	4.0	31
97	Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 380-386.	2.5	40
98	A new strategy to investigate the toxicity of nanomaterials using Langmuir monolayers as membrane models. Nanotoxicology, 2013, 7, 61-70.	1.6	34
99	The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochimica Acta, 2013, 87, 717-723.	2.6	22
100	Biosensors Based on Field-Effect Devices. , 2013, , 67-86.		2
101	Hybrid Nanocomposites Containing Carboxymethylcellulose and Silver Nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13, 1946-1950.	0.9	6
102	Indium tin oxide synthesized by a low cost route as SEGFET pH sensor. Materials Research, 2013, 16, 1156-1160.	0.6	31
103	Green Synthesis and Characterization of Silver Nanoparticles Reduced and Stabilized by Cashew Tree Gum. Advanced Science, Engineering and Medicine, 2013, 5, 890-893.	0.3	11
104	Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine. International Journal of Analytical Chemistry, 2012, 2012, 1-7.	0.4	10
105	Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination. International Journal of Analytical Chemistry, 2012, 2012, 1-10.	0.4	13
106	Tailoring Molecular Architectures with Cobalt Tetrasulfonated Phthalocyanine: Immobilization in Layer-by-Layer Films and Sensing Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 2399-2405.	0.9	10
107	Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicology Letters, 2012, 215, 119-125.	0.4	134
108	Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	14

#	Article	IF	CITATIONS
109	Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection. Sensors and Actuators B: Chemical, 2012, 169, 397-400.	4.0	31
110	Contribution of the cashew gum (Anacardium occidentale L.) for development of layer-by-layer films with potential application in nanobiomedical devices. Materials Science and Engineering C, 2012, 32, 1588-1593.	3.8	40
111	Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors. Biosensors, 2012, 2, 70-82.	2.3	41
112	Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer–carbon nanotube layer-by-layer films. Physical Chemistry Chemical Physics, 2012, 14, 14340.	1.3	15
113	Multi-Walled Carbon Nanotubes and Poly(lactic acid) Nanocomposite Fibrous Membranes Prepared by Solution Blow Spinning. Journal of Nanoscience and Nanotechnology, 2012, 12, 2733-2741.	0.9	33
114	The processing of polyelectrolyte-covered magnetite nanoparticles in the form of nanostructured thin films. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	14
115	Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 2012, 112, 1163-1172.	1.4	112
116	Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 2012, 109, 520-524.	2.7	298
117	Photoelectrochemical, photophysical and morphological studies of electrostatic layer-by-layer thin films based on poly(p-phenylenevinylene) and single-walled carbon nanotubes. Photochemical and Photobiological Sciences, 2011, 10, 1766.	1.6	4
118	Development and validation of a fast RP-HPLC method to determine the analogue of the thyroid hormone, 3,5,3′-triiodothyroacetic acid (TRIAC), in polymeric nanoparticles. Analytical Methods, 2011, 3, 1936.	1.3	0
119	Optimized architecture for Tyrosinase-containing Langmuir–Blodgett films to detect pyrogallol. Journal of Materials Chemistry, 2011, 21, 4995.	6.7	50
120	Barrier and Mechanical Properties of Clay-Reinforced Polymeric Nanocomposites. Polymer-Plastics Technology and Engineering, 2011, 50, 1323-1328.	1.9	30
121	Immobilization of Ibuprofen-Containing Nanospheres in Layer-by-Layer Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 1167-1174.	0.9	8
122	Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. Journal of Food Science, 2011, 76, N25-9.	1.5	66
123	Nanostructured polyaniline thin films as pH sensing membranes in FET-based devices. Sensors and Actuators B: Chemical, 2011, 160, 312-317.	4.0	38
124	The kinetic behavior of dehydrogenase enzymes in solution and immobilized onto nanostructured carbon platforms. Process Biochemistry, 2011, 46, 2347-2352.	1.8	26
125	Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine. Materials Chemistry and Physics, 2011, 130, 1072-1077.	2.0	22
126	Immobilization of lutetium bisphthalocyanine in nanostructured biomimetic sensors using the LbL technique for phenol detection. Biosensors and Bioelectronics, 2011, 26, 4715-4719.	5. 3	41

#	Article	IF	CITATIONS
127	Using multidimensional projection techniques for reaching a high distinguishing ability in biosensing. Analytical and Bioanalytical Chemistry, 2011, 400, 1153-9.	1.9	20
128	Development of nanostructured bioanodes containing dendrimers and dehydrogenases enzymes for application in ethanol biofuel cells. Biosensors and Bioelectronics, 2011, 26, 2922-2926.	5.3	34
129	Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing ⟨i⟩Leishmania amazonensis⟨/i⟩ lipidâ€rich extract and membrane models. Journal of Peptide Science, 2011, 17, 700-707.	0.8	20
130	Development of novel bioanodes for ethanol biofuel cell using PAMAM dendrimers as matrix for enzyme immobilization. Biosensors and Bioelectronics, 2011, 26, 2675-2679.	5.3	29
131	Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants. Biosensors and Bioelectronics, 2011, 26, 2513-2519.	5.3	75
132	Silsesquioxane as a New Building Block Material for Modified Electrodes Fabrication and Application as Neurotransmitters Sensors. Journal of Nanoscience and Nanotechnology, 2011, 11, 3499-3508.	0.9	17
133	Nanostructured Films Based on Carbon Nanotubes and Cobalt for the Electrocatalytic Reduction of H2O2. Electrochemical and Solid-State Letters, 2011, 14, P21.	2.2	3
134	Structural Characterization of Emeraldine-Salt Polyaniline/Gold Nanoparticles Complexes. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	46
135	Self-Assembled Films of Dendrimers and Metallophthalocyanines as FET-Based Glucose Biosensors. Sensors, 2011, 11, 9442-9449.	2.1	23
136	Biosensors for Efficient Diagnosis of Leishmaniasis: Innovations in Bioanalytics for a Neglected Disease. Analytical Chemistry, 2010, 82, 9763-9768.	3.2	66
137	Immobilization of biomolecules on nanostructured films for biosensing. Biosensors and Bioelectronics, 2010, 25, 1254-1263.	5.3	195
138	The effects of temperature on the molecular orientation of zinc phthalocyanine films. Journal of Materials Science, 2010, 45, 1366-1370.	1.7	71
139	The use of colloidal ferrofluid as building blocks for nanostructured layer-by-layer films fabrication. Journal of Nanoparticle Research, 2010, 12, 2779-2785.	0.8	6
140	Adsorption of chitosan on spin-coated cellulose films. Carbohydrate Polymers, 2010, 80, 65-70.	5.1	64
141	Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on fieldâ€effect devices. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 781-786.	0.8	24
142	Natural Polysaccharides as Active Biomaterials in Nanostructured Films for Sensing. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1533-1543.	1.9	21
143	Electrospinning of Hyperbranched Poly-L-Lysine/Polyaniline Nanofibers for Application in Cardiac Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1203-1207.	1.2	48
144	Immobilization of Poly(propylene imine) Dendrimer/Nickel Phtalocyanine as Nanostructured Multilayer Films To Be Used as Gate Membranes for SEGFET pH Sensors. Journal of Physical Chemistry C, 2010, 114, 6478-6483.	1.5	48

#	Article	IF	Citations
145	Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor. Analytical Chemistry, 2010, 82, 61-65.	3.2	40
146	Leishmanicidal Activity and Immobilization of dermaseptin O1 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 352-358.	1.7	44
147	Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric fieldâ€effect (bioâ€)chemical sensors. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 462-467.	0.8	52
148	Elastomeric composites based on ethylene–propylene–diene monomer rubber and conducting polymerâ€modified carbon black. Polymer Composites, 2009, 30, 897-906.	2.3	7
149	Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements. Materials Science and Engineering C, 2009, 29, 442-447.	3.8	42
150	The origin of the molecular interaction between amino acids and gold nanoparticles: A theoretical and experimental investigation. Chemical Physics Letters, 2009, 469, 186-190.	1.2	42
151	Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 2009, 24, 3073-3077.	5.3	106
152	Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosensors and Bioelectronics, 2009, 25, 497-501.	5.3	92
153	Immobilization of Alcohol Dehydrogenase in Phospholipid Langmuirâ^'Blodgett Films To Detect Ethanol. Langmuir, 2009, 25, 3057-3061.	1.6	36
154	Development of Highly Selective Enzymatic Devices Based on Deposition of Permselective Membranes on Aligned Nanowires. Journal of Physical Chemistry C, 2009, 113, 6037-6041.	1.5	13
155	Energy Transfer in Nanostructured Films Containing Poly(<i>p</i> p>-phenylene vinylene) and Acceptor Species. Journal of Physical Chemistry C, 2009, 113, 10303-10306.	1.5	12
156	Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors. Journal of Physical Chemistry C, 2009, 113, 14765-14770.	1.5	68
157	Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC). Physical Chemistry Chemical Physics, 2009, 11, 5086.	1.3	53
158	Using phospholipid Langmuir and Langmuir–Blodgett films as matrix for urease immobilization. Journal of Colloid and Interface Science, 2008, 319, 100-108.	5.0	60
159	Immobilization of liposomes in nanostructured layer-by-layer films containing dendrimers. Materials Science and Engineering C, 2008, 28, 467-471.	3.8	33
160	Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: Ethanol detection using electrical capacitance measurements. Thin Solid Films, 2008, 516, 9002-9005.	0.8	35
161	Processing of Electroactive Nanostructured Films Incorporating Carbon Nanotubes and Phthalocyanines for Sensing. Journal of Physical Chemistry C, 2008, 112, 9050-9055.	1.5	49
162	Influence of Film Architecture on the Charge-Transfer Reactions of Metallophthalocyanine Layer-by-Layer Films. Journal of Physical Chemistry C, 2007, 111, 12817-12821.	1.5	46

#	Article	IF	CITATIONS
163	Using Capacitance Measurements as the Detection Method in Antigen-Containing Layer-by-Layer Films for Biosensing. Analytical Chemistry, 2007, 79, 2163-2167.	3.2	59
164	Natural Gum-Assisted Phthalocyanine Immobilization in Electroactive Nanocomposites: Physicochemical Characterization and Sensing Applications. Biomacromolecules, 2007, 8, 3408-3413.	2.6	40
165	Nanocomp $ ilde{A}^3$ sitos eletroativos de poli-o-metoxianilina e polissacar $ ilde{A}$ deos naturais. Quimica Nova, 2007, 30, 1158-1162.	0.3	27
166	Energyâ€Modulated Heterostructures Made with Conjugated Polymers for Directional Energy Transfer and Carrier Confinement. Advanced Functional Materials, 2007, 17, 2862-2868.	7.8	9
167	Electroactive Nanostructured Membranes (ENM): Synthesis and Electrochemical Properties of Redox Mediator-Modified Gold Nanoparticles Using a Dendrimer Layer-by-Layer Approach. Electroanalysis, 2007, 19, 805-812.	1.5	31
168	Structural aspects of Langmuir–Blodgett and cast films of zinc phthalocyanine and zinc hexadecafluorophthalocyanine. Thin Solid Films, 2007, 515, 7307-7312.	0.8	16
169	Bifunctional electroactive nanostructured membranes. Electrochemistry Communications, 2007, 9, 2676-2680.	2.3	32
170	Electroactive LbL films of metallic phthalocyanines and poly(0-methoxyaniline) for sensing. Journal of Solid State Electrochemistry, 2007, 11, 1505-1510.	1.2	15
171	Enhanced Charge Transport and Incorporation of Redox Mediators in Layer-by-Layer Films Containing PAMAM-Encapsulated Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 17478-17483.	1.2	94
172	Physicochemical Properties and Sensing Ability of Metallophthalocyanines/Chitosan Nanocomposites. Journal of Physical Chemistry B, 2006, 110, 22690-22694.	1.2	70
173	Fabrication of Phytic Acid Sensor Based on Mixed Phytaseâ^'Lipid Langmuirâ^'Blodgett Films. Langmuir, 2006, 22, 8501-8508.	1.6	59
174	Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-by-layer films for methanol-tolerant cathodes. Electrochemistry Communications, 2006, 8, 348-352.	2.3	64
175	Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase. Biosensors and Bioelectronics, 2006, 21, 1320-1326.	5.3	64
176	Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sensors and Actuators B: Chemical, 2006, 113, 809-815.	4.0	89
177	Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix. Journal of Membrane Science, 2006, 279, 70-75.	4.1	26
178	Synthesis of Core–Shell Au@Polypyrrole Nanocomposite Using a Dendrimer-Template Approach. Journal of Nanoscience and Nanotechnology, 2006, 6, 2588-2590.	0.9	10
179	Transitions in the orientational order of liquid crystals induced by periodic patterned substrates. Physical Review E, 2006, 74, 021714.	0.8	5
180	Phenomenological analysis of the light intensity dependence of the photoalignment process in azo-containing polymeric films. Physical Review E, 2006, 74, 011802.	0.8	8

#	Article	IF	Citations
181	Morphology characterization of layer-by-layer films from PAH/MA-co-DR13: the role of film thickness. Journal of Colloid and Interface Science, 2005, 285, 544-550.	5.0	25
182	Optical storage and surface-relief gratings in azobenzene-containing nanostructured films. Advances in Colloid and Interface Science, 2005, 116, 179-192.	7.0	132
183	Nanoscale manipulation of CdSe quantum dots in layer-by-layer films: influence of the host polyelectrolyte on the luminescent properties. Applied Surface Science, 2005, 246, 397-402.	3.1	41
184	Structural characterization of blends containing both PVDF and natural rubber latex. Journal of Raman Spectroscopy, 2005, 36, 1118-1124.	1.2	37
185	Molecular-Level Control of the Photoluminescence from PPV Nanostructured Films. Journal of Physical Chemistry B, 2005, 109, 7063-7066.	1.2	16
186	Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 275-279.	1.2	94
187	Immobilization of Humic Acid in Nanostructured Layer-by-Layer Films for Sensing Applications. Environmental Science & Environm	4.6	74
188	Layer-by-Layer Hybrid Films Incorporating WO3, TiO2, and Chitosan. Chemistry of Materials, 2005, 17, 6739-6745.	3.2	49
189	Photoinduced Phenomena in Layer-by-Layer Films of Poly(Allylamine Hydrochloride) and Brilliant Yellow Azodye. Journal of Nanoscience and Nanotechnology, 2004, 4, 855-860.	0.9	21
190	Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer. Thin Solid Films, 2004, 453-454, 110-113.	0.8	23
191	Elastomeric conductive composites based on conducting polymer-modified carbon black. Polymer Composites, 2004, 25, 617-621.	2.3	26
192	Melt processing of composites of PVDF and carbon black modified with conducting polymers. Journal of Applied Polymer Science, 2004, 94, 553-557.	1.3	20
193	Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films To Control Electrochromogenic and Electrochemical Properties. Chemistry of Materials, 2004, 16, 2293-2299.	3.2	94
194	Mechanisms of surface-relief gratings formation in layer-by-layer films from azodyes. Polymer, 2003, 44, 6129-6133.	1.8	24
195	Unusual Interactions Binding Iron Tetrasulfonated Phthalocyanine and Poly(allylamine) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	18Jf 50 18
196	Electroactive Multilayer Films of Polyaniline and Vanadium Pentoxide. Journal of Physical Chemistry B, 2003, 107, 8351-8354.	1.2	60
197	Electrochemical synthesis of polypyrrole-azo dyes composite films. Synthetic Metals, 2003, 135-136, 161-162.	2.1	8
198	Electroactive Layer-by-Layer Films of Iron Tetrasulfonated Phthalocyanine. Synthetic Metals, 2003, 137, 945-946.	2.1	18

#	Article	IF	CITATIONS
199	Layer-by-Layer Hybrid Films of Polyaniline and Vanadium Oxide. Synthetic Metals, 2003, 137, 969-970.	2.1	6
200	Layer-by-Layer Nanostructured Hybrid Films of Polyaniline and Vanadium Oxide. Journal of Nanoscience and Nanotechnology, 2002, 2, 29-32.	0.9	34
201	Raman Microscopy and Mapping as a Probe for Photodegradation in Surface Relief Gratings Recorded on Layer-by-Layer Films of Congo Red/Polyelectrolyte. Applied Spectroscopy, 2002, 56, 187-191.	1.2	13
202	The influence of electrostatic and H-bonding interactions on the optical storage of layer-by-layer films of an azopolymer. Polymer, 2002, 43, 4645-4650.	1.8	33
203	RAMAN MICROSCOPY AND MAPPING OF SURFACE-RELIEF GRATINGS RECORDED ON AZOCELLULOSE FILMS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1549-1557.	1.2	3
204	Self-assembly films of polyacids and doped poly(o-alkoxyanilines). Synthetic Metals, 1995, 71, 2037-2038.	2.1	21