List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243778/publications.pdf Version: 2024-02-01

MINC 7HANC

#	Article	IF	CITATIONS
1	Directly electrospinning submillimeter continuous fibers on tubes to fabricate H2S detectors with fast and high response. Nano Materials Science, 2022, 4, 376-382.	8.8	2
2	Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage. Nano-Micro Letters, 2022, 14, 47.	27.0	41
3	Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries. Science China Materials, 2022, 65, 1751-1760.	6.3	9
4	Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–lon Hybrid Capacitors. Nano-Micro Letters, 2022, 14, 106.	27.0	63
5	Designing g ₃ N ₄ /Nâ€Rich Carbon Fiber Composites for Highâ€Performance Potassium″on Hybrid Capacitors. Energy and Environmental Materials, 2021, 4, 638-645.	12.8	20
6	Controllable deposition of FeV2S4 in carbon fibers for sodium-ion storage with high capacity and long lifetime. Science China Materials, 2021, 64, 1355-1366.	6.3	15
7	Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2021, 421, 129786.	12.7	68
8	Flexible Sb-graphene-carbon nanofibers as binder-free anodes for potassium-ion batteries with enhanced properties. Nanotechnology, 2021, 32, 025401.	2.6	8
9	Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Science China Materials, 2020, 63, 216-228.	6.3	31
10	An <i>in situ</i> electrospinning route to fabricate NiO–SnO ₂ based detectors for fast H ₂ S sensing. Nanotechnology, 2020, 31, 145503.	2.6	10
11	Cu2Se-ZnSe heterojunction encapsulated in carbon fibers for high-capacity anodes of sodium-ion batteries. Ionics, 2020, 26, 5525-5533.	2.4	15
12	Sulfur-Rich (NH ₄) ₂ Mo ₃ S ₁₃ as a Highly Reversible Anode for Sodium/Potassium-Ion Batteries. ACS Nano, 2020, 14, 9626-9636.	14.6	43
13	Encapsulated SnSe in carbon nanofibers as anode of sodium ion batteries with improved properties. Ionics, 2020, 26, 3937-3946.	2.4	13
14	Three-Dimensional Self-assembled Hairball-Like VS4 as High-Capacity Anodes for Sodium-Ion Batteries. Nano-Micro Letters, 2020, 12, 39.	27.0	35
15	Sâ€Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO ₂ for Na ⁺ /Li ⁺ Storage with High Capacity and Longâ€Time Stability. Small, 2019, 15, e1902201.	10.0	40
16	Encapsulation of MoSe ₂ in carbon fibers as anodes for potassium ion batteries and nonaqueous battery–supercapacitor hybrid devices. Nanoscale, 2019, 11, 13511-13520.	5.6	109
17	A Pyrazineâ€Based Polymer for Fastâ€Charge Batteries. Angewandte Chemie - International Edition, 2019, 58, 17820-17826.	13.8	173
18	A Pyrazineâ€Based Polymer for Fastâ€Charge Batteries. Angewandte Chemie, 2019, 131, 17984-17990.	2.0	19

#	Article	IF	CITATIONS
19	Na/Liâ€Ion Batteries: Sâ€Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO ₂ for Na ⁺ /Li ⁺ Storage with High Capacity and Longâ€Time Stability (Small 38/2019). Small, 2019, 15, 1970207.	10.0	0
20	Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates. Materials Research Bulletin, 2019, 114, 161-169.	5.2	48
21	The transformation of anatase TiO ₂ to TiSe ₂ to form TiO ₂ –TiSe ₂ composites for Li ⁺ /Na ⁺ storage with improved capacities. CrystEngComm, 2019, 21, 2517-2523.	2.6	17
22	Improved Na+/K+ Storage Properties of ReSe2–Carbon Nanofibers Based on Graphene Modifications. Nano-Micro Letters, 2019, 11, 22.	27.0	46
23	K+ storage in porous red blood cell-like hollow carbon. Journal of Alloys and Compounds, 2019, 779, 505-510.	5.5	7
24	Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. Journal of Physics and Chemistry of Solids, 2019, 126, 72-77.	4.0	30
25	Grapheneâ€Encapsulated FeS ₂ in Carbon Fibers as High Reversible Anodes for Na ⁺ /K ⁺ Batteries in a Wide Temperature Range. Small, 2019, 15, e1804740.	10.0	115
26	ZnO-carbon nanofibers for stable, high response, and selective H ₂ S sensors. Nanotechnology, 2018, 29, 275501.	2.6	29
27	Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Materials Letters, 2018, 219, 19-22.	2.6	59
28	S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. Energy Storage Materials, 2018, 13, 215-222.	18.0	52
29	Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na,) Tj ETQq1	10.7843 16.0	14 rgBT /O
30	Sandwichâ€like MoS ₂ @SnO ₂ @C with High Capacity and Stability for Sodium/Potassium Ion Batteries. Small, 2018, 14, e1703818.	10.0	158
31	TIN-BASED COMPOUNDS AS ANODE MATERIALS FOR LITHIUM-ION STORAGE. , 2018, , 581-638.		0
32	Improved sodium storage performances of plasma treated self-supported carbon fibers. Solid State Ionics, 2018, 327, 52-58.	2.7	9
33	Octopus tentacles-like WO3/C@CoO as high property and long life-time electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 281, 1-8.	5.2	25
34	Enhanced electrochemical properties of SnO ₂ –graphene–carbon nanofibers tuned by phosphoric acid for potassium storage. Nanotechnology, 2018, 29, 375702.	2.6	22
35	Multi-protection from nanochannels and graphene of SnSb-graphene‑carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics, 2018, 324, 267-275.	2.7	58
36	CoSe2/WSe2/WO3 hybrid nanowires on carbon cloth for efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2018, 768, 889-895.	5.5	24

#	Article	IF	CITATIONS
37	The double effects of sulfur-doping on MoO2/C nanofibers with high properties for Na-ion batteries. Applied Surface Science, 2018, 455, 343-348.	6.1	30
38	Mo2C embedded in S-doped carbon nanofibers for high-rate performance and long-life time Na-ion batteries. Solid State Ionics, 2018, 323, 151-156.	2.7	32
39	The Improvement of SiO2 Nanoparticles on the Oxygen Reduction Reaction Property of Nitrogen-Doped Mesoporous Graphene Spheres Prepared by Spray Drying. Nanoscience and Nanotechnology Letters, 2018, 10, 200-206.	0.4	2
40	Rational design and synthesis of sandwich-like iron nitride-graphene composites as efficient catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 202-211.	7.1	10
41	3D reticular pomegranate-like CoMn 2 O 4 /C for ultrahigh rate lithium-ion storage with re-oxidation of manganese. Electrochimica Acta, 2017, 241, 244-251.	5.2	15
42	Pipe-Wire TiO ₂ –Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. Nano Letters, 2017, 17, 3830-3836.	9.1	272
43	Single Nozzle Electrospinning Synthesized MoO ₂ @C Core Shell Nanofibers with High Capacity and Longâ€Term Stability for Lithiumâ€Ion Storage. Advanced Materials Interfaces, 2017, 4, 1600816.	3.7	73
44	p-Type SnO thin layers on n-type SnS ₂ nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 512-518.	10.3	97
45	Energy Storage: A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na ⁺ Storage (Small 22/2017). Small, 2017, 13, .	10.0	8
46	A Phaseâ€&eparation Route to Synthesize Porous CNTs with Excellent Stability for Na ⁺ Storage. Small, 2017, 13, 1604045.	10.0	34
47	Co ₃ O ₄ –SnO ₂ nanobox sensor with a PN junction and semiconductor–conductor transformation for high selectivity and sensitivity detection of H ₂ S. CrystEngComm, 2017, 19, 5742-5748.	2.6	35
48	In-situ phase transition to form porous h-MoO3@C nanofibers with high stability for Li+/Na+ storage. Science China Materials, 2017, 60, 755-765.	6.3	25
49	Design and synthesis of Cr2O3@C@C composites with yolk-shell structure for Li+ storage. Journal of Alloys and Compounds, 2017, 724, 406-412.	5.5	19
50	Improving the electrochemical properties of Cr-SnO 2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics, 2017, 308, 1-7.	2.7	23
51	In Situ Barbecue-Like Fabrication of Porous Ag/Fe2O3 Sensors. Nanoscience and Nanotechnology Letters, 2017, 9, 1387-1392.	0.4	3
52	Flexible NiO–Graphene–Carbon Fiber Mats Containing Multifunctional Graphene for High Stability and High Specific Capacity Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 11507-11515.	8.0	28
53	Multifunctional Cr 2 O 3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks. Electrochimica Acta, 2016, 217, 55-61.	5.2	26
54	The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors. Science China Materials, 2016, 59, 629-638.	6.3	28

#	Article	IF	CITATIONS
55	Electrospinning Synthesis of Ni°, Fe° Codoped Ultrafine-ZnFe2O4/C Nanofibers and Their Properties for Lithium Ion Storage. Electrochimica Acta, 2016, 194, 357-366.	5.2	41
56	Green and rapid synthesis of 3D Fe2(MoO4)3 by microwave irradiation to detect H2S gas. Materials Letters, 2016, 168, 171-175.	2.6	28
57	Diethylamine gas sensor using V ₂ O ₅ -decorated α-Fe ₂ O ₃ nanorods as a sensing material. RSC Advances, 2016, 6, 6511-6515.	3.6	17
58	Preparation and properties of novel microporous hydrogels with poly(ethylene glycol) dimethacrylate and carboxylated carbon nanotubes. Journal of Controlled Release, 2015, 213, e86.	9.9	4
59	The positive influence of graphene on the mechanical and electrochemical properties of SnxSb-graphene-carbon porous mats as binder-free electrodes for Li+ storage. Electrochimica Acta, 2015, 186, 223-230.	5.2	21
60	Stannous ions reducing graphene oxide at room temperature to produce SnO _x -porous, carbon-nanofiber flexible mats as binder-free anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 12672-12679.	10.3	33
61	The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13384-13389.	10.3	172
62	Chemically anchored NiO _x –carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity. RSC Advances, 2015, 5, 26521-26529.	3.6	24
63	Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors. Electrochimica Acta, 2015, 180, 983-989.	5.2	42
64	Encapsulating Sn _{<i>x</i>} Sb Nanoparticles in Multichannel Graphene-Carbon Fibers As Flexible Anodes to Store Lithium Ions with High Capacities. ACS Applied Materials & Interfaces, 2015, 7, 21890-21897.	8.0	40
65	Solvent-Controlled Synthesis of NiO–CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage. ACS Applied Materials & Interfaces, 2015, 7, 21703-21711.	8.0	63
66	Facile Synthesis of Spike-Piece-Structured Ni(OH) ₂ Interlayer Nanoplates on Nickel Foam as Advanced Pseudocapacitive Materials for Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 5168-5174.	8.0	61
67	Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy, 2014, 3, 36-45.	16.0	265
68	Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures. Journal of Materials Chemistry A, 2014, 2, 11728-11741.	10.3	28
69	Highly sensitive humidity sensors based on Sb-doped ZnSnO3 nanoparticles with very small sizes. CrystEngComm, 2014, 16, 2977.	2.6	33
70	Facile synthesis of cobalt sulfide/carbon nanotube shell/core composites for high performance supercapacitors. RSC Advances, 2014, 4, 12050.	3.6	55
71	Facile and Green Preparation for the Formation of MoO ₂ -GO Composites as Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 24890-24897.	3.1	58
72	Flexible CoO–graphene–carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. Journal of Materials Chemistry A, 2014, 2, 5890-5897.	10.3	121

#	Article	IF	CITATIONS
73	Sn-Doped V ₂ O ₅ Film with Enhanced Lithium-Ion Storage Performance. Journal of Physical Chemistry C, 2013, 117, 23507-23514.	3.1	170
74	CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale, 2013, 5, 12342.	5.6	149
75	Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Advances, 2013, 3, 19366.	3.6	41
76	Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	15
77	Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochimica Acta, 2013, 106, 386-391.	5.2	17
78	Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy, 2013, 2, 769-778.	16.0	54
79	Additive-free solvothermal synthesis and Li-ion intercalation properties ofÂdumbbell-shaped LiFePO4/C mesocrystals. Journal of Power Sources, 2013, 239, 103-110.	7.8	36
80	Synthesis of Bacteria Promoted Reduced Graphene Oxide-Nickel Sulfide Networks for Advanced Supercapacitors. ACS Applied Materials & amp; Interfaces, 2013, 5, 7335-7340.	8.0	130
81	Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7247.	10.3	246
82	Leafâ€Like V ₂ O ₅ Nanosheets Fabricated by a Facile Green Approach as High Energy Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1171-1175.	19.5	200
83	β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale, 2012, 4, 7810.	5.6	145
84	A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. Journal of Materials Chemistry, 2012, 22, 3868.	6.7	125
85	α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale, 2012, 4, 3422.	5.6	92
86	Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23091.	6.7	97
87	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	5.6	14
88	Three-Dimensional Coherent Titania–Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 2985-2992.	8.0	84
89	Ultrasensitive ethanol sensor based on 3D aloe-like SnO2. Sensors and Actuators B: Chemical, 2012, 166-167, 7-11.	7.8	54
90	Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres. Sensors and Actuators B: Chemical, 2012, 166-167, 61-67.	7.8	90

#	Article	IF	CITATIONS
91	Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Nanoscale, 2011, 3, 4389.	5.6	83
92	Flexible morphology-controlled synthesis of mesoporous hierarchical α-Fe2O3 architectures and their gas-sensing properties. CrystEngComm, 2011, 13, 806-812.	2.6	100
93	Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale, 2011, 3, 3646.	5.6	135
94	Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. Journal of Materials Chemistry, 2011, 21, 1673-1676.	6.7	201
95	Morphology effect on the performances of SnO2 nanorod arrays as anodes for Li-ion batteries. Materials Letters, 2011, 65, 1154-1156.	2.6	38
96	3-D mesoporous nano/micro-structured Fe3O4/C as a superior anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011, 15, 2563-2569.	2.5	42
97	In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Materials Letters, 2010, 64, 2076-2079.	2.6	146
98	Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Materials Letters, 2010, 64, 2350-2353.	2.6	40
99	Fe3O4 dendrites reduced by carbon-coatings as high reversible capacity anodes for lithium ion batteries. Solid State Sciences, 2010, 12, 2024-2029.	3.2	21
100	Facile preparation of porous one-dimensional Mn2O3 nanostructures and their application as anode materials for lithium-ion batteries. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 70-75.	2.7	42
101	One-Step Synthesis of Hierarchical SnO ₂ Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 8084-8088.	3.1	258
102	Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 5538.	6.7	284
103	A novel non-enzymatic hydrogen peroxide sensor based on Mn-nitrilotriacetate acid (Mn-NTA) nanowires. Talanta, 2010, 81, 727-731.	5.5	38
104	Fast Response Amperometric Biosensor for H ₂ O ₂ Detection Based on Horseradish-Peroxidase/Titania-Nanowires/Chitosan Modified Glassy Carbon Electrode. Sensor Letters, 2009, 7, 543-549.	0.4	4
105	Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film. Materials Science and Engineering C, 2009, 29, 1794-1797.	7.3	38
106	SnO ₂ monolayer porous hollow spheres as a gas sensor. Nanotechnology, 2009, 20, 455503.	2.6	85
107	Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide. Talanta, 2008, 77, 37-41.	5.5	33
108	A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta, 2008, 77, 455-459.	5.5	176

#	Article	IF	CITATIONS
109	Static Microindentation and Displacement-Sensitive Indentation Tests on Undoped GaAs. Materials Research Society Symposia Proceedings, 2005, 904, 1.	0.1	0
110	Microstructural Aspects and Mechanism of Degradation of 4H-SiC PiN Diodes under Forward Biasing. Materials Research Society Symposia Proceedings, 2004, 815, 223.	0.1	7
111	Transition from brittle fracture to ductile behavior in 4H–SiC. Journal of Materials Research, 2003, 18, 1087-1095.	2.6	21
112	Cubic silicon nitride embedded in amorphous silicon dioxide. Journal of Materials Research, 2001, 16, 2179-2181.	2.6	0
113	Effect of TMG Addition on the Epitaxial Growth of 3C-SiC on Si(100) and Si(111) Using Hexamethyldisilane. Materials Research Society Symposia Proceedings, 2000, 640, 1.	0.1	Ο