Rasool Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243616/publications.pdf Version: 2024-02-01

PASOOL SHAH

#	Article	IF	CITATIONS
1	Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform. AIMS Mathematics, 2022, 7, 6936-6958.	0.7	70
2	Numerical Investigation of Fractional-Order Swift–Hohenberg Equations via a Novel Transform. Symmetry, 2021, 13, 1263.	1.1	69
3	Analytical Investigation of Noyes–Field Model for Time-Fractional Belousov–Zhabotinsky Reaction. Complexity, 2021, 2021, 1-21.	0.9	62
4	A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry, 2022, 14, 986.	1.1	61
5	Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Entropy, 2019, 21, 335.	1.1	58
6	Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry, 2022, 14, 739.	1.1	54
7	Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Entropy, 2019, 21, 597.	1.1	53
8	A Comparative Analysis of the Fractional-Order Coupled Korteweg–De Vries Equations with the Mittag–Leffler Law. Journal of Mathematics, 2022, 2022, 1-30.	0.5	47
9	The Numerical Investigation of a Fractional-Order Multi-Dimensional Model of Navier–Stokes Equation via Novel Techniques. Symmetry, 2022, 14, 1102.	1.1	46
10	Analytical Investigation of Fractional-Order Cahn–Hilliard and Gardner Equations Using Two Novel Techniques. Mathematics, 2022, 10, 1643.	1.1	45
11	Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation. Symmetry, 2019, 11, 149.	1.1	43
12	Analysis of the Time Fractional-Order Coupled Burgers Equations with Non-Singular Kernel Operators. Mathematics, 2021, 9, 2326.	1.1	39
13	A Novel Analytical View of Time-Fractional Korteweg-De Vries Equations via a New Integral Transform. Symmetry, 2021, 13, 1254.	1.1	37
14	Laplace decomposition for solving nonlinear system of fractional order partial differential equations. Advances in Difference Equations, 2020, 2020, .	3.5	37
15	Analytical Solutions of Fractional-Order Diffusion Equations by Natural Transform Decomposition Method. Entropy, 2019, 21, 557.	1.1	36
16	On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators. AIMS Mathematics, 2022, 7, 12483-12513.	0.7	36
17	A semi-analytical method to solve family of Kuramoto–Sivashinsky equations. Journal of Taibah University for Science, 2020, 14, 402-411.	1.1	35
18	A New Analysis of Fractional-Order Equal-Width Equations via Novel Techniques. Symmetry, 2021, 13, 886.	1.1	35

RASOOL SHAH

#	Article	IF	CITATIONS
19	An Analytical Technique, Based on Natural Transform to Solve Fractional-Order Parabolic Equations. Entropy, 2021, 23, 1086.	1.1	35
20	On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques. Journal of Function Spaces, 2022, 2022, 1-14.	0.4	35
21	The analytical investigation of time-fractional multi-dimensional Navier–Stokes equation. AEJ - Alexandria Engineering Journal, 2020, 59, 2941-2956.	3.4	34
22	An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems. Energies, 2020, 13, 2725.	1.6	33
23	The Comparative Study for Solving Fractional-Order Fornberg–Whitham Equation via ϕLaplace Transform. Symmetry, 2021, 13, 784.	1.1	33
24	Fractional View Analysis of Kuramoto–Sivashinsky Equations with Non-Singular Kernel Operators. Symmetry, 2022, 14, 1463.	1.1	33
25	Fractional Whitham–Broer–Kaup Equations within Modified Analytical Approaches. Axioms, 2019, 8, 125.	0.9	32
26	An Efficient Analytical Technique, for The Solution of Fractional-Order Telegraph Equations. Mathematics, 2019, 7, 426.	1.1	31
27	Numerical Investigation of the Time-Fractional Whitham–Broer–Kaup Equation Involving without Singular Kernel Operators. Complexity, 2021, 2021, 1-21.	0.9	31
28	The Analysis of Fractional-Order Nonlinear Systems of Third Order KdV and Burgers Equations via a Novel Transform. Complexity, 2022, 2022, 1-24.	0.9	31
29	Natural Transform Decomposition Method for Solving Fractional-Order Partial Differential Equations with Proportional Delay. Mathematics, 2019, 7, 532.	1.1	30
30	Analytical Solution of Fractional-Order Hyperbolic Telegraph Equation, Using Natural Transform Decomposition Method. Electronics (Switzerland), 2019, 8, 1015.	1.8	30
31	An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations. Mathematics, 2019, 7, 505.	1.1	30
32	Analytical Solutions of (2+Time Fractional Order) Dimensional Physical Models, Using Modified Decomposition Method. Applied Sciences (Switzerland), 2020, 10, 122.	1.3	28
33	Some analytical and numerical investigation of a family of fractionalâ€order Helmholtz equations in two space dimensions. Mathematical Methods in the Applied Sciences, 2020, 43, 199-212.	1.2	25
34	Controllability for Fuzzy Fractional Evolution Equations in Credibility Space. Fractal and Fractional, 2021, 5, 112.	1.6	25
35	A novel method for the analytical solution of fractional Zakharov–Kuznetsov equations. Advances in Difference Equations, 2019, 2019, .	3.5	25
36	A New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations. IEEE Access, 2019, 7, 150037-150050.	2.6	24

RASOOL SHAH

#	Article	IF	CITATIONS
37	Modified Modelling for Heat Like Equations within Caputo Operator. Energies, 2020, 13, 2002.	1.6	23
38	The Analytical Analysis of Time-Fractional Fornberg–Whitham Equations. Mathematics, 2020, 8, 987.	1.1	22
39	Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations. Journal of Function Spaces, 2021, 2021, 1-10.	0.4	22
40	<mi>Φ</mi> -Haar Wavelet Operational Matrix Method for Fractional Relaxation-Oscillation Equations Containing <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"><mi>Φ</mi>-Caputo Fractional Derivative. Journal of Function Spaces, 2021, 2021, 1-14.</math 	0.4	20
41	Fractional View Analysis of Third Order Kortewege-De Vries Equations, Using a New Analytical Technique. Frontiers in Physics, 2020, 7, .	1.0	17
42	A Reliable Way to Deal with Fractional-Order Equations That Describe the Unsteady Flow of a Polytropic Gas. Mathematics, 2022, 10, 2293.	1.1	15
43	Analysis of the Fractional-Order Local Poisson Equation in Fractal Porous Media. Symmetry, 2022, 14, 1323.	1.1	15
44	The Analysis of the Fractional-Order Navier-Stokes Equations by a Novel Approach. Journal of Function Spaces, 2022, 2022, 1-18.	0.4	14
45	Analysis of the Fuzzy Fractional-Order Solitary Wave Solutions for the KdV Equation in the Sense of Caputo-Fabrizio Derivative. Journal of Mathematics, 2022, 2022, 1-12.	0.5	13
46	Fractional View Analysis of Acoustic Wave Equations, Using Fractional-Order Differential Equations. Applied Sciences (Switzerland), 2020, 10, 610.	1.3	12
47	The analytical analysis of nonlinear fractional-order dynamical models. AIMS Mathematics, 2021, 6, 6201-6219.	0.7	11
48	A Semi-Analytical Method to Investigate Fractional-Order Gas Dynamics Equations by Shehu Transform. Symmetry, 2022, 14, 1458.	1.1	11
49	The analysis of the fractional-order system of third-order KdV equation within different operators. AEJ - Alexandria Engineering Journal, 2022, 61, 11825-11834.	3.4	10
50	The Chebyshev Wavelet Method (CWM) for the Numerical Solution of Fractional HIV Infection of CD4\$\$^+\$\$T Cells Model. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	9
51	Numerical Analysis of Fractional-Order Parabolic Equations via Elzaki Transform. Journal of Function Spaces, 2021, 2021, 1-10.	0.4	9
52	Exact analysis of electro-osmotic flow of Walters'-B fluid with non-singular kernel. Pramana - Journal of Physics, 2021, 95, 1.	0.9	8
53	Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order \$ (1, 2) \$. AIMS Mathematics, 2022, 7, 8891-8913.	0.7	8
54	On the Fractional View Analysis of Keller–Segel Equations with Sensitivity Functions. Complexity, 2020, 1-15.	0.9	7

RASOOL SHAH

#	ARTICLE	IF	CITATIONS
55	An Analytical Investigation of Fractional-Order Biological Model Using an Innovative Technique. Complexity, 2020, 2020, 1-13.	0.9	7
56	A Modified Techniques of Fractional-Order Cauchy-Reaction Diffusion Equation via Shehu Transform. Journal of Function Spaces, 2021, 2021, 1-15.	0.4	6
57	The Analysis of Fractional-Order Navier-Stokes Model Arising in the Unsteady Flow of a Viscous Fluid via Shehu Transform. Journal of Function Spaces, 2021, 2021, 1-15.	0.4	6
58	A Novel Analytical Approach for the Solution of Fractional-Order Diffusion-Wave Equations. Fractal and Fractional, 2021, 5, 206.	1.6	6
59	The Numerical Investigation of Fractional-Order Zakharov–Kuznetsov Equations. Complexity, 2021, 2021, 1-13.	0.9	5
60	A Comparative Analysis of Fractional Space-Time Advection-Dispersion Equation via Semi-Analytical Methods. Journal of Function Spaces, 2022, 2022, 1-11.	0.4	5
61	Numerical Investigation of Fractional-Order Differential Equations via <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>ï†</mi> -Haar-Wavelet Method. Journal of Function Spaces, 2021, 2021, 1-14.</math 	0.4	4
62	Analytical Analysis of Fractional-Order Physical Models via a Caputo-Fabrizio Operator. Journal of Function Spaces, 2021, 2021, 1-9.	0.4	3
63	Novel Analysis of Fuzzy Fractional Emden-Fowler Equations within New Iterative Transform Method. Journal of Function Spaces, 2022, 2022, 1-9.	0.4	3
64	Exact solutions of the Laplace fractional boundary value problems via natural decomposition method. Open Physics, 2020, 18, 1178-1187.	0.8	2
65	Mathematical Simulation of Heat Transfer in Thermally Magnetised Oldroyd-B Fluid in Sakiadis Rheology with a Heat Reservoir. Mathematics, 2022, 10, 1775.	1.1	1
66	Dynamical Analysis of Fractional Integro-Differential Equations. Mathematics, 2022, 10, 2071.	1.1	1