
H Troy Ghashghaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience, 2022, 44, 2077-2094.	4.6	1
2	Illumination angle correction during image acquisition in light-sheet fluorescence microscopy using deep learning. Biomedical Optics Express, 2022, 13, 888.	2.9	9
3	Deep learning-based autofocus method enhances image quality in light-sheet fluorescence microscopy. Biomedical Optics Express, 2021, 12, 5214.	2.9	32
4	Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet. PLoS ONE, 2021, 16, e0257426.	2.5	5
5	Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage. Cells, 2020, 9, 2662.	4.1	24
6	Ependymaâ€expressed <scp>CCN</scp> 1 restricts the size of the neural stem cell pool in the adult ventricularâ€subventricular zone. EMBO Journal, 2020, 39, e101679.	7.8	12
7	Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex. Development (Cambridge), 2020, 147, .	2.5	11
8	Foxj1 expressing ependymal cells do not contribute new cells to sites of injury or stroke in the mouse forebrain. Scientific Reports, 2018, 8, 1766.	3.3	22
9	To scratch an itch: Establishing a mouse model to determine active brain areas involved in acute histaminergic itch. IBRO Reports, 2018, 5, 67-73.	0.3	6
10	Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Scientific Reports, 2017, 7, 41122.	3.3	108
11	Stomach curvature is generated by left-right asymmetric gut morphogenesis. Development (Cambridge), 2017, 144, 1477-1483.	2.5	15
12	Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Letters, 2017, 591, 4009-4026.	2.8	7
13	Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning. Nature Neuroscience, 2017, 20, 20-23.	14.8	23
14	Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. Journal of Neuroscience, 2016, 36, 11394-11401.	3.6	67
15	TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics. Analytical and Bioanalytical Chemistry, 2016, 408, 3453-3474.	3.7	14
16	TAK1 determines susceptibility to endoplasmic reticulum stress and hypothalamic leptin resistance. Journal of Cell Science, 2016, 129, 1855-65.	2.0	11
17	Neurotypic cell attachment and growth on III-nitride lateral polarity structures. Materials Science and Engineering C, 2016, 58, 1194-1198.	7.3	14
18	Unique Glycan Signatures Regulate Adeno-Associated Virus Tropism in the Developing Brain. Journal of Virology, 2015, 89, 3976-3987.	3.4	13

#	Article	IF	CITATIONS
19	Influence of Desorption Conditions on Analyte Sensitivity and Internal Energy in Discrete Tissue or Whole Body Imaging by IR-MALDESI. Journal of the American Society for Mass Spectrometry, 2015, 26, 899-910.	2.8	22
20	MARCKS â€dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging. Aging Cell, 2015, 14, 764-773.	6.7	22
21	Transplantation of GABAergic Interneurons into the Neonatal Primary Visual Cortex Reduces Absence Seizures in Stargazer Mice. Cerebral Cortex, 2015, 25, 2970-2979.	2.9	40
22	A Knockâ€in <i>Foxj1^{CreERT2::GFP}</i> mouse for recombination in epithelial cells with motile cilia. Genesis, 2014, 52, 350-358.	1.6	36
23	Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Structure and Function, 2013, 218, 1033-1049.	2.3	12
24	Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development (Cambridge), 2013, 140, 552-561.	2.5	35
25	A <i>Nestin-cre</i> transgenic mouse is insufficient for recombination in early embryonic neural progenitors. Biology Open, 2012, 1, 1200-1203.	1.2	82
26	Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb. Journal of Neuroscience, 2011, 31, 9368-9382.	3.6	52
27	MARCKS Trafficking In Airway Epithelial Cells: Dynamics Of Phosphorylation And Membrane/Actin Binding. , 2010, , .		0
28	An Organotypic Slice Assay for High-Resolution Time-Lapse Imaging of Neuronal Migration in the Postnatal Brain. Journal of Visualized Experiments, 2010, , .	0.3	4
29	MARCKS Protein Is Involved In Migration Of Murine Macrophages. , 2010, , .		0
30	Development of a Model of Sacrocaudal Spinal Cord Injury in Cloned Yucatan MiniPigs for Cellular Transplantation Research. Cellular Reprogramming, 2010, 12, 689-697.	0.9	27
31	FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development (Cambridge), 2009, 136, 4021-4031.	2.5	228
32	ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum. Experimental Cell Research, 2009, 315, 110-118.	2.6	41
33	Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia. Journal of Neurodevelopmental Disorders, 2009, 1, 302-312.	3.1	32
34	Analysis of neuronal proliferation, migration and differentiation in the postnatal brain using equine infectious anemia virus-based lentiviral vectors. Gene Therapy, 2009, 16, 1021-1033.	4.5	14
35	Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 2007, 21, 3258-3271.	5.9	59
36	Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 2007, 34, 905-923.	4.2	752

H TROY GHASHGHAEI

#	Article	IF	CITATIONS
37	Radial Glial Dependent and Independent Dynamics of Interneuronal Migration in the Developing Cerebral Cortex. PLoS ONE, 2007, 2, e794.	2.5	99
38	Neuronal migration in the adult brain: are we there yet?. Nature Reviews Neuroscience, 2007, 8, 141-151.	10.2	165
39	The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1930-1935.	7.1	158
40	Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nature Neuroscience, 2004, 7, 1319-1328.	14.8	233
41	Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neuroscience, 2003, 4, 25.	1.9	296
42	Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 2002, 115, 1261-1279.	2.3	719
43	Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience, 2001, 103, 593-614.	2.3	90
44	Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory-Related Areas in the Rhesus Monkey. Journal of Comparative Neurology, 1999, 410, 343-367.	1.6	262