Yanyan Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924345/publications.pdf

Version: 2024-02-01

1.0	210	759233	888059
18	310	12	17
papers	citations	h-index	g-index
18	18	18	295
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and utilization of Co3O4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. Materials Science and Engineering C, 2020, 107, 110209.	7.3	53
2	Electrochemical performance of myoglobin based on TiO ₂ -doped carbon nanofiber decorated electrode and its applications in biosensing. RSC Advances, 2019, 9, 4480-4487.	3.6	27
3	Gold Nanocage-Based Electrochemical Sensing Platform for Sensitive Detection of Luteolin. Sensors, 2018, 18, 2309.	3.8	24
4	A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis. Analytical Methods, 2018, 10, 5297-5304.	2.7	23
5	ZnO-reduced graphene oxide composite based photoelectrochemical aptasensor for sensitive Cd(II) detection with methylene blue as sensitizer. Analytica Chimica Acta, 2020, 1118, 1-8.	5.4	22
6	Voltammetric sensing performances of a carbon ionic liquid electrode modified with black phosphorene and hemin. Mikrochimica Acta, 2019, 186, 304.	5.0	21
7	Electrochemical behavior of horseradish peroxidase on WS ₂ nanosheetâ€modified electrode and electrocatalytic investigation. Journal of the Chinese Chemical Society, 2018, 65, 1127-1135.	1.4	20
8	A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Mikrochimica Acta, 2019, 186, 783.	5.0	18
9	Fabrication of ZIF-67@three-dimensional reduced graphene oxide aerogel nanocomposites and their electrochemical applications for rutin detection. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190, 113505.	2.8	18
10	Voltammetric Determination of Metol on a Gold Nanoparticle Modified Carbon Molecular Wire Electrode. Analytical Letters, 2017, 50, 325-335.	1.8	16
11	Electrochemical aptamer sensor for highly sensitive detection of mercury ion with Au/Pt@carbon nanofiberâ€modified electrode. Journal of the Chinese Chemical Society, 2021, 68, 114-120.	1.4	16
12	A sensitive electrochemical sensor for detection of rutin based on a gold nanocageâ€modified electrode. Journal of the Chinese Chemical Society, 2019, 66, 1336-1340.	1.4	15
13	Photoelectrochemical aptasensor for lead(II) by exploiting the CdS nanoparticle-assisted photoactivity of TiO2 nanoparticles and by using the quercetin-copper(II) complex as the DNA intercalator. Mikrochimica Acta, 2019, 186, 826.	5.0	12
14	The structural properties of 5-methyl-2-phenyl-2 H -1,2,3-triazole-4- carboxylic acid and chromogenic mechanism on its rhodamine B derivatives to Hg 2+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 200, 127-135.	3.9	10
15	Investigation of the direct electrochemistry and electrocatalysis of myoglobin on gold nanorods modified electrode. Journal of the Chinese Chemical Society, 2019, 66, 1341-1346.	1.4	7
16	Electrochemical performance and electrocatalytic behavior of myoglobin on graphene tubeâ€modified electrode. Journal of the Chinese Chemical Society, 2020, 67, 1054-1061.	1.4	6
17	Photoelectrochemical biosensor for lead ion determination based on complementary strand aptamers. Journal of the Chinese Chemical Society, 2021, 68, 2194-2201.	1.4	1
18	Electrochemical DNA Biosensor Based on Platinum-gold Bimetal Decorated Graphene Modified Electrode for the Detection of <i>Vibrio parahaemolyticus</i> Specific <i>tlh</i> Gene Sequence. Current Analytical Chemistry, 2022, 18, 781-789.	1.2	1