
Anders Bach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243204/publications.pdf Version: 2024-02-01

ANDERS RACH

#	Article	IF	CITATIONS
1	Identification and Optimization of Novel Small-Molecule Cas9 Inhibitors by Cell-Based High-Throughput Screening. Journal of Medicinal Chemistry, 2022, 65, 3266-3305.	2.9	5
2	ldentification of Novel Fragments Binding to the PDZ1â€⊋ Domain of PSDâ€95. ChemMedChem, 2021, 16, 949-954.	1.6	1
3	The European Federation for Medicinal Chemistry and Chemical Biology (EFMC) Best Practice Initiative: Phenotypic Drug Discovery. ChemMedChem, 2021, 16, 1737-1740.	1.6	7
4	Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds. Journal of Medicinal Chemistry, 2021, 64, 4623-4661.	2.9	30
5	GHB analogs confer neuroprotection through specific interaction with the CaMKIIÎ \pm hub domain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
6	Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. Molecular Metabolism, 2021, 49, 101207.	3.0	9
7	Developing Inhibitors of the p47phox–p22phox Protein–Protein Interaction by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 1156-1177.	2.9	25
8	The dynamics of linear polyubiquitin. Science Advances, 2020, 6, .	4.7	38
9	Conjugation of Therapeutic PSD-95 Inhibitors to the Cell-Penetrating Peptide Tat Affects Blood–Brain Barrier Adherence, Uptake, and Permeation. Pharmaceutics, 2020, 12, 661.	2.0	22
10	A highâ€affinity, bivalent <scp>PDZ</scp> domain inhibitor complexes <scp>PICK</scp> 1 to alleviate neuropathic pain. EMBO Molecular Medicine, 2020, 12, e11248.	3.3	20
11	A Comparative Assessment Study of Known Small-Molecule Keap1â~'Nrf2 Protein–Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity. Journal of Medicinal Chemistry, 2019, 62, 8028-8052.	2.9	66
12	Molecular architecture of the Jumonji C family histone demethylase KDM5B. Scientific Reports, 2019, 9, 4019.	1.6	16
13	Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor. Neuropharmacology, 2019, 150, 100-111.	2.0	21
14	Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1–Nuclear Factor Erythroid 2-Related Factor 2 (Keap1–Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases. Journal of Medicinal Chemistry, 2018, 61, 8088-8103.	2.9	71
15	PSD-95 uncoupling from NMDA receptors by Tat- <i>N</i> -dimer ameliorates neuronal depolarization in cortical spreading depression. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1820-1828.	2.4	27
16	Targeting Oxidative Stress in Stroke. Springer Series in Translational Stroke Research, 2017, , 203-250.	0.1	8
17	Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacology Biochemistry and Behavior, 2017, 161, 62-67.	1.3	2
18	Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats. Neurochemical Research, 2017, 42, 3401-3413.	1.6	5

Anders Bach

#	Article	IF	CITATIONS
19	<i>In vitro</i> and <i>inÂvivo</i> effects of a novel dimeric inhibitor of <scp>PSD</scp> â€95 on excitotoxicity and functional recovery after experimental traumatic brain injury. European Journal of Neuroscience, 2017, 45, 238-248.	1.2	14
20	Effects of the dimeric PSD-95 inhibitor UCCB01-144 in mouse models of pain, cognition and motor function. European Journal of Pharmacology, 2016, 780, 166-173.	1.7	6
21	Acid Ceramidase in Melanoma. Journal of Biological Chemistry, 2016, 291, 2422-2434.	1.6	72
22	Design and synthesis of triazole-based peptidomimetics of a PSD-95 PDZ domain inhibitor. MedChemComm, 2016, 7, 531-536.	3.5	8
23	Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions. Scientific Reports, 2015, 5, 12157.	1.6	29
24	Rigidified Clicked Dimeric Ligands for Studying the Dynamics of the PDZ1â€⊋ Supramodule of PSDâ€95. ChemBioChem, 2015, 16, 64-69.	1.3	15
25	Benzoxazolone Carboxamides as Potent Acid Ceramidase Inhibitors: Synthesis and Structure–Activity Relationship (SAR) Studies. Journal of Medicinal Chemistry, 2015, 58, 9258-9272.	2.9	29
26	Design, Synthesis, and Characterization of Fatty Acid Derivatives of a Dimeric Peptide-Based Postsynaptic Density-95 (PSD-95) Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 1575-1580.	2.9	10
27	Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family. PLoS ONE, 2015, 10, e0117668.	1.1	17
28	Benzoxazolone Carboxamides: Potent and Systemically Active Inhibitors of Intracellular Acid Ceramidase. Angewandte Chemie - International Edition, 2014, 54, n/a-n/a.	7.2	23
29	UCCB01-125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK-801. Neuropharmacology, 2013, 67, 193-200.	2.0	20
30	Energetic Pathway Sampling in a Protein Interaction Domain. Structure, 2013, 21, 1193-1202.	1.6	38
31	Interaction partners of PSD-93 studied by X-ray crystallography and fluorescence polarization spectroscopy. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 587-594.	2.5	5
32	PDZ Domain-Mediated Interactions of G Protein-Coupled Receptors with Postsynaptic Density Protein 95: Quantitative Characterization of Interactions. PLoS ONE, 2013, 8, e63352.	1.1	11
33	A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3317-3322.	3.3	162
34	Side-Chain Interactions Form Late and Cooperatively in the Binding Reaction between Disordered Peptides and PDZ Domains. Journal of the American Chemical Society, 2012, 134, 599-605.	6.6	41
35	Ligand binding by PDZ domains. BioFactors, 2012, 38, 338-348.	2.6	66
36	Cell-Permeable and Plasma-Stable Peptidomimetic Inhibitors of the Postsynaptic Density-95/ <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Interaction. Journal of Medicinal Chemistry, 2011, 54, 1333-1346.	2.9	81

Anders Bach

#	Article	IF	CITATIONS
37	Expedient Synthesis of 1,3-Substituted Benzene Peptidomimetics. Synthesis, 2011, 2011, 807-815.	1.2	2
38	Biophysical Characterization of the Complex between Human Papillomavirus E6 Protein and Synapse-associated Protein 97. Journal of Biological Chemistry, 2011, 286, 3597-3606.	1.6	18
39	A Fluorescence Polarization Based Screening Assay for Identification of Small Molecule Inhibitors of the PICK1 PDZ Domain. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 590-600.	0.6	12
40	Unique Interaction Pattern for a Functionally Biased Ghrelin Receptor Agonist. Journal of Biological Chemistry, 2011, 286, 20845-20860.	1.6	42
41	Deciphering the Kinetic Binding Mechanism of Dimeric Ligands Using a Potent Plasma-stable Dimeric Inhibitor of Postsynaptic Density Protein-95 as an Example. Journal of Biological Chemistry, 2010, 285, 28252-28260.	1.6	29
42	Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 413-418.	3.3	100
43	A Conserved Aromatic Lock for the Tryptophan Rotameric Switch in TM-VI of Seven-transmembrane Receptors. Journal of Biological Chemistry, 2010, 285, 3973-3985.	1.6	126
44	Structure–activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Organic and Biomolecular Chemistry, 2010, 8, 4281.	1.5	31
45	Design and Synthesis of Highly Potent and Plasmaâ€Stable Dimeric Inhibitors of the PSDâ€95–NMDA Receptor Interaction. Angewandte Chemie - International Edition, 2009, 48, 9685-9689.	7.2	55
46	Detecting Protein–Protein Interactions in Living Cells: Development of a Bioluminescence Resonance Energy Transfer Assay to Evaluate the PSD-95/NMDA Receptor Interaction. Neurochemical Research, 2009, 34, 1729-1737.	1.6	7
47	A Sequential Binding Mechanism in a PDZ Domain. Biochemistry, 2009, 48, 7089-7097.	1.2	46
48	Modified Peptides as Potent Inhibitors of the Postsynaptic Density-95/ <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Interaction. Journal of Medicinal Chemistry, 2008, 51, 6450-6459.	2.9	61
49	Ghrelin Receptor Inverse Agonists: Identification of an Active Peptide Core and Its Interaction Epitopes on the Receptor. Molecular Pharmacology, 2006, 70, 936-946.	1.0	82
50	Nonpeptide and Peptide Growth Hormone Secretagogues Act Both as Ghrelin Receptor Agonist and as Positive or Negative Allosteric Modulators of Ghrelin Signaling. Molecular Endocrinology, 2005, 19, 2400-2411.	3.7	111
51	Common Structural Basis for Constitutive Activity of the Ghrelin Receptor Family. Journal of Biological Chemistry, 2004, 279, 53806-53817.	1.6	303