Yong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9243113/publications.pdf Version: 2024-02-01

YONG YANG

#	Article	IF	CITATIONS
1	Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017, 2017, 1-13.	0.9	487
2	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
3	Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomaterialia, 2019, 98, 174-185.	4.1	148
4	Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials, 2012, 33, 4998-5003.	5.7	133
5	Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 49-58.	2.5	111
6	Nanotopographical Modulation of Cell Function through Nuclear Deformation. ACS Applied Materials & amp; Interfaces, 2016, 8, 5082-5092.	4.0	88
7	Effects of Topographical and Mechanical Property Alterations Induced by Oxygen Plasma Modification on Stem Cell Behavior. ACS Nano, 2012, 6, 8591-8598.	7.3	86
8	Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia. PLoS ONE, 2015, 10, e0140506.	1.1	85
9	Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Molecular Cancer, 2017, 16, 63.	7.9	79
10	Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Biomaterials, 2005, 26, 2585-2594.	5.7	68
11	Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab on A Chip, 2011, 11, 1638.	3.1	61
12	Nanoscale surfacing for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 478-495.	3.3	58
13	Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials, 2017, 7, 307.	1.9	56
14	In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioactive Materials, 2020, 5, 891-901.	8.6	51
15	Low Oxygen Tension and Synthetic Nanogratings Improve the Uniformity and Stemness of Human Mesenchymal Stem Cell Layer. Molecular Therapy, 2010, 18, 1010-1018.	3.7	43
16	Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomaterials Science and Engineering, 2020, 6, 3231-3257.	2.6	32
17	Nanotopography Alters Nuclear Protein Expression, Proliferation and Differentiation of Human Mesenchymal Stem/Stromal Cells. PLoS ONE, 2014, 9, e114698.	1.1	28
18	Carbon nanotubes induced fibrogenesis on nanostructured substrates. Environmental Science: Nano, 2017, 4, 689-699.	2.2	23

Yong Yang

#	Article	IF	CITATIONS
19	Induction of Stemlike Cells with Fibrogenic Properties by Carbon Nanotubes and Its Role in Fibrogenesis. Nano Letters, 2014, 14, 3110-3116.	4.5	21
20	Low-Pressure Carbon Dioxide Enhanced Polymer Chain Mobility below the Bulk Glass Transition Temperature. Macromolecules, 2007, 40, 1108-1111.	2.2	19
21	Adhesion-based tumor cell capture using nanotopography. Colloids and Surfaces B: Biointerfaces, 2016, 147, 291-299.	2.5	19
22	Substrate Stiffness-Dependent Carbon Nanotube-Induced Lung Fibrogenesis. Nano Letters, 2019, 19, 5443-5451.	4.5	17
23	Assembly of Three-Dimensional Polymeric Constructs Containing Cells/Biomolecules Using Carbon Dioxide. Journal of the American Chemical Society, 2006, 128, 14040-14041.	6.6	16
24	Piezo1 plays a role in optic nerve head astrocyte reactivity. Experimental Eye Research, 2021, 204, 108445.	1.2	13
25	Analysis of polystyrene surface properties on thin film bonding under carbon dioxide pressure using nanoparticle embedding technique. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1535-1542.	2.4	11
26	Predicting Nanotube Fibrogenicity through Stem Cell-Mediated Fibroblast Focus and Spheroid Formation. Nano Letters, 2018, 18, 6500-6508.	4.5	10
27	Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104342.	1.5	10
28	Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior. ACS Applied Materials & Interfaces, 2022, 14, 17081-17092.	4.0	8
29	Bioassembly of threeâ€dimensional embryonic stem cellâ€scaffold complexes using compressed gases. Biotechnology Progress, 2009, 25, 535-542.	1.3	6
30	Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration. Journal of Cardiovascular Development and Disease, 2021, 8, 125.	0.8	5
31	Microfluidic Cell Culture Platforms with Embedded Nanoscale Features. , 2013, , 3-26.		4
32	Expanding Nanopatterned Substrates Using Stitch Technique for Nanotopographical Modulation of Cell Behavior. Journal of Visualized Experiments, 2016, , .	0.2	3
33	Microfluidic platforms with nanoscale features. , 2019, , 65-90.		3
34	NANOTOPOGRAPHICAL MODULATION OF CELL PHENOTYPE AND FUNCTION. Nano LIFE, 2013, 03, 1340003.	0.6	1
35	Luciferase reporter cells as a platform to detect SMAD-dependent collagen production. Journal of Bioscience and Bioengineering, 2014, 118, 732-735.	1.1	1
36	Subcritical CO2 Assisted Polymer Surface Engineering at Low Temperatures. Materials Research Society Symposia Proceedings, 2004, 843, 2101.	0.1	0