Aygul Valeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9242938/publications.pdf

Version: 2024-02-01

		1478505	1372567
20	121	6	10
papers	citations	h-index	g-index
20	20	20	63
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of the structure of babbit B83 on the intensity of wear of tribocouplings. Metal Science and Heat Treatment, 2006, 48, 88-91.	0.6	23
2	Effect of structure of B83 babbit on its wear. Journal of Friction and Wear, 2014, 35, 311-315.	0.5	21
3	Microstructure of the \hat{I}^2 -phase in the Sn11Sb5.5Cu babbit. Physics of Metals and Metallography, 2017, 118, 48-51.	1.0	8
4	Effect of radial-shear rolling on structure of aluminum alloy D16 (Al-4.4Cu-1.6Mg). Inorganic Materials: Applied Research, 2015, 6, 45-48.	0.5	7
5	On the wear rate of an Sn11Sb5.5Cu Babbitt. Journal of Friction and Wear, 2017, 38, 53-57.	0.5	7
6	Influence of the pin shape of the tool during friction stir welding on the process output parameters. Letters on Materials, 2019, 9, 456-459.	0.7	7
7	Effect of Powerful Current Pulses on the Structure and Mechanical Properties of the Aluminum Alloy Al-6%Mg-0.6%Mn. Journal of Materials Engineering and Performance, 2005, 14, 236-240.	2.5	6
8	Ni-based protective-lubricant coatings for zirconium alloys. Inorganic Materials: Applied Research, 2012, 3, 226-230.	0.5	6
9	On the mechanism of running-in during wear tests of a babbitt B83. Physics of Metals and Metallography, 2015, 116, 509-511.	1.0	6
10	Structure and hardness of cold-rolled nickel after single and multiple electric pulse treatment. Letters on Materials, 2019, 9, 447-450.	0.7	6
11	Tin- and copper-based electrochemical coatings for sliding bearings. Journal of Friction and Wear, 2012, 33, 34-38.	0.5	4
12	Structure and properties of babbit Sn11Sb5,5Cu subjected to high pressure torsion. Letters on Materials, 2016, 6, 347-349.	0.7	4
13	The influence of radial shear rolling on the structure and properties of 58Ni-Cr-Mo-B-Al-Cu superalloy. Letters on Materials, 2021, 11, 566-570.	0.7	4
14	Influence of electric pulse treatment on structure and hardness of cryorolled aluminum. Letters on Materials, 2021, 11, 351-356.	0.7	3
15	Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride. Russian Physics Journal, 2015, 58, 869-872.	0.4	2
16	Effect of electric pulse treatment on the structure and hardness of nickel deformed at room and liquid nitrogen temperatures. IOP Conference Series: Materials Science and Engineering, 0, 1008, 012006.	0.6	2
17	Effect of the length of the tool pin on the hardening of 2024 aluminum alloy under friction stir processing. Letters on Materials, 2021, 11, 119-124.	0.7	2
18	Structue and strength of fine-grain copper after cryorolling and single electrĐ¾-pulsing of different capacity. Letters on Materials, 2021, 11, 491-496.	0.7	2

AYGUL VALEEVA

#	Article	lF	CITATIONS
19	Effect of the rheological parameters of the surface layer of structurally inhomogeneous billets on fore and strain characteristics in the case of plastic strain. Strength of Materials, 2008, 40, 485-490.	0.5	1
20	Evaluation of the thermodynamic possibility of in-situ composites fabrication in aluminum-metal and aluminum-metal oxide systems through friction stir processing. Letters on Materials, 2021, 11, 544-547.	0.7	0