Kerst Stelwagen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924269/publications.pdf Version: 2024-02-01

KERST STELMACEN

#	Article	IF	CITATIONS
1	Immune components of bovine colostrum and milk1. Journal of Animal Science, 2009, 87, 3-9.	0.2	375
2	Characterisation of Host Defence Proteins in Milk Using a Proteomic Approach. Journal of Proteome Research, 2007, 6, 207-215.	1.8	253
3	An Improved Method for the Routine Biopsy of Bovine Mammary Tissue. Journal of Dairy Science, 1996, 79, 543-549.	1.4	142
4	Expression of a β-Defensin mRNA, Lingual Antimicrobial Peptide, in Bovine Mammary Epithelial Tissue Is Induced by Mastitis. Infection and Immunity, 2004, 72, 7311-7314.	1.0	125
5	Regulation of yield loss and milk composition during once-daily milking: a review. Livestock Science, 1999, 59, 77-94.	1.2	120
6	Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. Journal of Dairy Science, 2009, 92, 117-129.	1.4	114
7	The Role of Tight Junctions in Mammary Gland Function. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 131-138.	1.0	112
8	Effect of Milking Frequency on Mammary Functioning and Shape of the Lactation Curve. Journal of Dairy Science, 2001, 84, E204-E211.	1.4	111
9	Milking interval, milk production and milk flow-rate in an automatic milking system. Livestock Science, 2001, 72, 157-167.	1.2	96
10	Mammary Epithelial Cell Tight Junction Integrity and Mammary Blood Flow During an Extended Milking Interval in Goats. Journal of Dairy Science, 1994, 77, 426-432.	1.4	94
11	Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. Animal, 2012, 6, 375-381.	1.3	93
12	Epigenetic Regulation of Milk Production in Dairy Cows. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 101-112.	1.0	92
13	Invited review: Reduced milking frequency: Milk production and management implications. Journal of Dairy Science, 2013, 96, 3401-3413.	1.4	81
14	The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays a role in host defence. Biomarkers, 2009, 14, 26-37.	0.9	78
15	Effect of Once Daily Milking and Concurrent Somatotropin on Mammary Tight Junction Permeability and Yield of Cows. Journal of Dairy Science, 1994, 77, 2994-3001.	1.4	75
16	Partitioning of milk accumulation between cisternal and alveolar compartments of the bovine udder: relationship to production loss during once daily milking. Journal of Dairy Research, 1998, 65, 1-8.	0.7	74
17	Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein occludin in mammary cells. Molecular and Cellular Endocrinology, 1999, 156, 55-61.	1.6	73
18	Reduction in heat-induced gastrointestinal hyperpermeability in rats by bovine colostrum and goat milk powders. Journal of Applied Physiology, 2004, 96, 650-654.	1.2	73

KERST STELWAGEN

#	Article	IF	CITATIONS
19	Effect of Milking Frequency and Pasture Intake on Milk Yield and Composition of Late Lactation Cows. Journal of Dairy Science, 1999, 82, 1232-1239.	1.4	67
20	Host-defence-related proteins in cows' milk. Animal, 2012, 6, 415-422.	1.3	67
21	Effect of unilateral once or twice daily milking of cows on milk yield and udder characteristics in early and late lactation. Journal of Dairy Research, 1997, 64, 487-494.	0.7	61
22	Time course of milk accumulation-induced opening of mammary tight junctions, and blood clearance of milk components. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R379-R386.	0.9	60
23	cDNA Microarray Analysis Reveals that Antioxidant and Immune Genes Are Upregulated During Involution of the Bovine Mammary Gland. Journal of Dairy Science, 2008, 91, 2236-2246.	1.4	60
24	Elevated plasma cortisol reduces permeability of mammary tight junctions in the lactating bovine mammary epithelium. Journal of Endocrinology, 1998, 159, 173-178.	1.2	51
25	Effect of Milking Frequency and Somatotropin on the Activity of Plasminogen Activator, Plasminogen, and Plasmin in Bovine Milk. Journal of Dairy Science, 1994, 77, 3577-3583.	1.4	50
26	Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection. Proteome Science, 2014, 12, 19.	0.7	40
27	Effect of Prepartum Bovine Somatotropin in Primigravid Ewes on Mammogenesis, Milk Production, and Hormone Concentrations. Journal of Dairy Science, 1993, 76, 992-1001.	1.4	37
28	EGTA-induced disruption of epithelial cell tight junctions in the lactating caprine mammary gland. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R848-R855.	0.9	37
29	Milk accumulation decreases expression of genes involved in cell–extracellular matrix communication and is associated with induction of apoptosis in the bovine mammary gland. Livestock Science, 2005, 98, 67-78.	1.2	34
30	Effect of milking frequency on milk somatic cell count characteristics and mammary secretory cell damage in cows. American Journal of Veterinary Research, 1996, 57, 902-5.	0.3	32
31	Growth and Subsequent Lactation in Primigravid Holstein Heifers After Prepartum Bovine Somatotropin Treatment. Journal of Dairy Science, 1992, 75, 463-471.	1.4	31
32	Short Communication: Effects of Isolation Stress on Mammary Tight Junctions in Lactating Dairy Cows. Journal of Dairy Science, 2000, 83, 48-51.	1.4	28
33	Effect of Plane of Nutrition on Growth and Mammary Gland Development in Holstein Heifers. Journal of Dairy Science, 1990, 73, 2333-2341.	1.4	26
34	The effects of milking frequency in early lactation on milk yield, mammary cell turnover, and secretory activity in grazing dairy cows. Journal of Dairy Science, 2015, 98, 305-311.	1.4	26
35	Effects of stage of lactation and time of year on plasmin-derived proteolytic activity in bovine milk in New Zealand. Journal of Dairy Research, 2002, 69, 533-540.	0.7	25
36	Direct analysis of fatty acid profile from milk by thermochemolysis–gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 316-323.	1.8	24

KERST STELWAGEN

#	Article	IF	CITATIONS
37	Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. Journal of Dairy Science, 2016, 99, 7523-7543.	1.4	23
38	Alteration of the Sodium to Potassium Ratio in Milk and the Effect on Milk Secretion in Goats. Journal of Dairy Science, 1999, 82, 52-59.	1.4	22
39	Modifying milk composition to increase use of dairy products in healthy diets. Animal Feed Science and Technology, 2006, 131, 149-153.	1.1	22
40	Impact of Dietary Dairy Polar Lipids on Lipid Metabolism of Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2013, 61, 2729-2738.	2.4	22
41	Continuous versus single drainage of milk from the bovine mammary gland during a 24 hour period. Experimental Physiology, 1996, 81, 141-149.	0.9	19
42	An anti-inflammatory component derived from milk of hyperimmunised cows reduces tight junction permeability in vitro. Inflammation Research, 1998, 47, 384-388.	1.6	17
43	Effect of milking interval on milk yield and quality and rate of recovery during subsequent frequent milking. Livestock Science, 2008, 114, 176-180.	0.6	16
44	The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows. Journal of Dairy Science, 2015, 98, 5422-5428.	1.4	15
45	Activation of signal transducer and activator of transcription 5 (STAT5) is linked to β1-integrin protein abundance in unilaterally milked bovine mammary glands. Journal of Dairy Science, 2015, 98, 3133-3142.	1.4	15
46	Effect of plane of nutrition between 6 and 16 months of age on body composition, plasma hormone concentrations and first-lactation milk production in Holstein heifers. Canadian Journal of Animal Science, 1992, 72, 337-346.	0.7	14
47	No Evidence for Basolateral Secretion of Milk Protein in the Mammary Gland of Lactating Goats. Journal of Dairy Science, 1998, 81, 434-437.	1.4	11
48	Temporal and spatial heterogeneity in milk and immune-related gene expression during mammary gland involution in dairy cows. Journal of Dairy Science, 2017, 100, 7669-7685.	1.4	11
49	Effect of bovine somatotropin administration during the last trimester of gestation on maternal growth, and foetal and placental development in primigravid ewes. Animal Science, 1994, 58, 87-94.	1.3	10
50	Regulation of mammary tight junctions through parathyroid hormone-related peptide-induced activation of apical calcium channels. Journal of Endocrinology, 2003, 178, 257-264.	1.2	10
51	The effect of milking reinitiation following extended nonmilking periods on lactation in primiparous dairy cows. Journal of Dairy Science, 2015, 98, 7666-7674.	1.4	10
52	Tight Junction Protein Abundance and Apoptosis During Involution of Rat Mammary Glands. Journal of Cellular Physiology, 2017, 232, 2075-2082.	2.0	10
53	Applications of recombinant DNA technology to improve milk production: a review. Livestock Science, 1992, 31, 153-178.	1.2	9
54	NUCLEAR MAGNETIC RESONANCE IMAGING AND PROTON SPECTROSCOPY USED AS A TECHNIQUE TO ASSESS MAMMARY GLAND COMPOSITION IN HOLSTEIN HEIFERS. Canadian Journal of Animal Science, 1990, 70, 1151-1154.	0.7	8

KERST STELWAGEN

#	Article	IF	CITATIONS
55	Assessment of a bioactive compound for its potential antiinflammatory property by tight junction permeability. Phytotherapy Research, 2005, 19, 1009-1012.	2.8	8
56	Mammary Gland, Milk Biosynthesis and Secretion Milk Protein. , 2011, , 359-366.		7
57	Mammary-derived growth inhibitor in bovine milk: Effect of milking frequency and somatotropin administration. Canadian Journal of Animal Science, 1994, 74, 695-698.	0.7	6
58	Primary cilia distribution and orientation during involution of the bovine mammary gland. Journal of Dairy Science, 2016, 99, 3966-3978.	1.4	5
59	Effect of cortisol on mammary tight junction (TJ) permeability in lactating dairy cows. Livestock Science, 1997, 50, 39-40.	1.2	3
60	Effect of zeolite administration on nitrogen metabolism and excretion in lactating dairy cows offered pasture herbage. Animal Production Science, 2021, 61, 560.	0.6	2
61	Mammary Gland, Milk Biosynthesis and Secretion: Milk Protein â~†. , 2016, , .		1
62	Mammary Gland, Milk Biosynthesis and Secretion: Milk Protein. , 2022, , 198-205.		1
63	17. Elevated sodium content in milk affects milk synthesis, but not mammary tight junction (TJ) integrity in goats. Livestock Science, 1997, 50, 170-171.	1.2	Ο
64	Foreword: Lactation biology. Animal, 2012, 6, 353-354.	1.3	0