List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9242554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibody Responses to Phlebotomus papatasi Saliva in American Soldiers With Cutaneous Leishmaniasis Versus Controls. Frontiers in Tropical Diseases, 2022, 2, .	0.5	1
2	Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Neglected Tropical Diseases, 2021, 15, e0009137.	1.3	6
3	Towards a Sustainable Vector-Control Strategy in the Post Kala-Azar Elimination Era. Frontiers in Cellular and Infection Microbiology, 2021, 11, 641632.	1.8	8
4	A sand fly salivary protein acts as a neutrophil chemoattractant. Nature Communications, 2021, 12, 3213.	5.8	19
5	Individuals co-exposed to sand fly saliva and filarial parasites exhibit altered monocyte function. PLoS Neglected Tropical Diseases, 2021, 15, e0009448.	1.3	2
6	The human immune response to saliva of Phlebotomus alexandri, the vector of visceral leishmaniasis in Iraq, and its relationship to sand fly exposure and infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009378.	1.3	4
7	A clinical study to optimise a sand fly biting protocol for use in a controlled human infection model of cutaneous leishmaniasis (the FLYBITE study). Wellcome Open Research, 2021, 6, 168.	0.9	4
8	Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Communications Biology, 2021, 4, 929.	2.0	30
9	Sandfly Fever Sicilian Virus-Leishmania major co-infection modulates innate inflammatory response favoring myeloid cell infections and skin hyperinflammation. PLoS Neglected Tropical Diseases, 2021, 15, e0009638.	1.3	11
10	Leishmaniasis: the act of transmission. Trends in Parasitology, 2021, 37, 976-987.	1.5	43
11	Leishmania infantum xenodiagnosis from vertically infected dogs reveals significant skin tropism. PLoS Neglected Tropical Diseases, 2021, 15, e0009366.	1.3	11
12	Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms, 2021, 9, 2253.	1.6	10
13	Phlebotomus papatasi sand fly predicted salivary protein diversity and immune response potential based on in silico prediction in Egypt and Jordan populations. PLoS Neglected Tropical Diseases, 2020, 14, e0007489.	1.3	1
14	A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications, 2020, 11, 3461.	5.8	72
15	Immunity to vector saliva is compromised by short sand fly seasons in endemic regions with temperate climates. Scientific Reports, 2020, 10, 7990.	1.6	10
16	Heme Oxygenase-1 Induction by Blood-Feeding Arthropods Controls Skin Inflammation and Promotes Disease Tolerance. Cell Reports, 2020, 33, 108317.	2.9	10
17	Leishmania infection induces a limited differential gene expression in the sand fly midgut. BMC Genomics, 2020, 21, 608.	1.2	16
18	Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in <i>Lutzomyia longipalpis</i> Sand Flies. MSphere, 2020, 5, .	1.3	4

#	Article	IF	CITATIONS
19	Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet, The, 2020, 395, 1998-2007.	6.3	42
20	Distinct gene expression patterns in vector-residing Leishmania infantum identify parasite stage-enriched markers. PLoS Neglected Tropical Diseases, 2020, 14, e0008014.	1.3	19
21	Single-cell RNA sequencing of <i>Trypanosoma brucei</i> from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2613-2621.	3.3	47
22	World neglected tropical diseases day. PLoS Neglected Tropical Diseases, 2020, 14, e0007999.	1.3	23
23	Leishmania: A Maestro in Epigenetic Manipulation of Macrophage Inflammasomes. Trends in Parasitology, 2020, 36, 498-501.	1.5	4
24	Will COVID-19 become the next neglected tropical disease?. PLoS Neglected Tropical Diseases, 2020, 14, e0008271.	1.3	22
25	What constitutes a neglected tropical disease?. PLoS Neglected Tropical Diseases, 2020, 14, e0008001.	1.3	61
26	Implicating bites from a leishmaniasis sand fly vector in the loss of tolerance in pemphigus. JCI Insight, 2020, 5, .	2.3	4
27	Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 1-7.	1.4	9
28	DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Neglected Tropical Diseases, 2019, 13, e0007067.	1.3	17
29	Asymptomatic Visceral Leishmania infantum Infection in US Soldiers Deployed to Iraq. Clinical Infectious Diseases, 2019, 68, 2036-2044.	2.9	20
30	Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-11². Cell Host and Microbe, 2018, 23, 134-143.e6.	5.1	174
31	Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine?. Journal of Infectious Diseases, 2018, 218, 7-15.	1.9	62
32	Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nature Microbiology, 2018, 3, 548-555.	5.9	108
33	Phlebotomus papatasi Yellow-Related and Apyrase Salivary Proteins Are Candidates for Vaccination against Human Cutaneous Leishmaniasis. Journal of Investigative Dermatology, 2018, 138, 598-606.	0.3	11
34	Immunization of Experimental Dogs With Salivary Proteins From Lutzomyia longipalpis, Using DNA and Recombinant Canarypox Virus Induces Immune Responses Consistent With Protection Against Leishmania infantum. Frontiers in Immunology, 2018, 9, 2558.	2.2	15
35	Coinfection With Trypanosoma brucei Confers Protection Against Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 2855.	2.2	4
36	Lutzomyia longipalpis Saliva Induces Heme Oxygenase-1 Expression at Bite Sites. Frontiers in Immunology, 2018, 9, 2779.	2.2	13

#	Article	IF	CITATIONS
37	Biomarkers for Zoonotic Visceral Leishmaniasis in Latin America. Frontiers in Cellular and Infection Microbiology, 2018, 8, 245.	1.8	8
38	Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes. Parasites and Vectors, 2018, 11, 214.	1.0	13
39	A cross-sectional study of the filarial and Leishmania co-endemicity in two ecologically distinct settings in Mali. Parasites and Vectors, 2018, 11, 18.	1.0	11
40	The Gut Microbiome of the Vector <i>Lutzomyia longipalpis</i> Is Essential for Survival of <i>Leishmania infantum</i> . MBio, 2017, 8, .	1.8	115
41	A defined subunit vaccine that protects against vector-borne visceral leishmaniasis. Npj Vaccines, 2017, 2, 23.	2.9	31
42	Patchy Parasitized Skin Governs Leishmania donovani Transmission to Sand Flies. Trends in Parasitology, 2017, 33, 748-750.	1.5	7
43	The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B. Frontiers in Immunology, 2017, 8, 1065.	2.2	19
44	Unique Features of Vector-Transmitted Leishmaniasis and Their Relevance to Disease Transmission and Control. , 2017, , 91-114.		1
45	Leishmania HASP and SHERP Genes Are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host. PLoS Pathogens, 2017, 13, e1006130.	2.1	17
46	Structure of SALO, a leishmaniasis vaccine candidate from the sand fly Lutzomyia longipalpis. PLoS Neglected Tropical Diseases, 2017, 11, e0005374.	1.3	11
47	Basic and Translational Research on Sand Fly Saliva. , 2017, , 65-89.		3
48	The yin and yang of leishmaniasis control. PLoS Neglected Tropical Diseases, 2017, 11, e0005529.	1.3	34
49	Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005951.	1.3	36
50	Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica. PLoS Neglected Tropical Diseases, 2016, 10, e0004771.	1.3	47
51	Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis. Scientific Reports, 2016, 6, 32619.	1.6	37
52	SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis. Scientific Reports, 2016, 6, 19300.	1.6	40
53	Differential expression profiles of the salivary proteins SP15 and SP44 from Phlebotomus papatasi. Parasites and Vectors, 2016, 9, 357.	1.0	7
54	VSG overcomes an early barrier to survival of African trypanosomes in tsetse flies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6821-6823.	3.3	0

#	Article	IF	CITATIONS
55	New Insights Into the Transmissibility of <i>Leishmania infantum</i> From Dogs to Sand Flies: Experimental Vector-Transmission Reveals Persistent Parasite Depots at Bite Sites. Journal of Infectious Diseases, 2016, 213, 1752-1761.	1.9	54
56	Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters. PLoS Neglected Tropical Diseases, 2016, 10, e0004322.	1.3	56
57	Prevalence of Cutaneous Leishmaniasis in Districts of High and Low Endemicity in Mali. PLoS Neglected Tropical Diseases, 2016, 10, e0005141.	1.3	19
58	Seasonal and Physiological Variations of Phlebotomus papatasi Salivary Gland Antigens in Central Iran. Journal of Arthropod-Borne Diseases, 2016, 10, 39-49.	0.9	4
59	Phlebotomus papatasi SP15: mRNA expression variability and amino acid sequence polymorphisms of field populations. Parasites and Vectors, 2015, 8, 298.	1.0	17
60	Building Research and Development Capacity for Neglected Tropical Diseases Impacting Leishmaniasis in the Middle East and North Africa: A Case Study. PLoS Neglected Tropical Diseases, 2015, 9, e0003695.	1.3	6
61	A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Science Translational Medicine, 2015, 7, 290ra90.	5.8	121
62	Does the Arthropod Microbiota Impact the Establishment of Vector-Borne Diseases in Mammalian Hosts?. PLoS Pathogens, 2015, 11, e1004646.	2.1	51
63	Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut. Cell Reports, 2015, 13, 957-967.	2.9	220
64	Validation of Recombinant Salivary Protein PpSP32 as a Suitable Marker of Human Exposure to Phlebotomus papatasi, the Vector of Leishmania major in Tunisia. PLoS Neglected Tropical Diseases, 2015, 9, e0003991.	1.3	47
65	Vector Saliva in Vaccines for Visceral Leishmaniasis: A Brief Encounter of High Consequence?. Frontiers in Public Health, 2014, 2, 99.	1.3	38
66	Targeting Components in Vector Saliva. , 2014, , 599-608.		0
67	Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen. PLoS Neglected Tropical Diseases, 2014, 8, e2751.	1.3	71
68	Characterization of the Early Inflammatory Infiltrate at the Feeding Site of Infected Sand Flies in Mice Protected from Vector-Transmitted Leishmania major by Exposure to Uninfected Bites. PLoS Neglected Tropical Diseases, 2014, 8, e2781.	1.3	28
69	Using Humans to Make a Human Leishmaniasis Vaccine. Science Translational Medicine, 2014, 6, 234fs18.	5.8	12
70	What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infection, Genetics and Evolution, 2014, 28, 691-703.	1.0	122
71	A Listeria monocytogenes-Based Vaccine That Secretes Sand Fly Salivary Protein LJM11 Confers Long-Term Protection against Vector-Transmitted Leishmania major. Infection and Immunity, 2014, 82, 2736-2745.	1.0	14
72	Delayed-Type Hypersensitivity to Sand Fly Saliva in Humans from a Leishmaniasis-Endemic Area of Mali Is TH1-Mediated and Persists to Midlife. Journal of Investigative Dermatology, 2013, 133, 452-459.	0.3	49

#	Article	IF	CITATIONS
73	The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine, 2013, 31, 480-486.	1.7	51
74	A New Model of Progressive Visceral Leishmaniasis in Hamsters by Natural Transmission via Bites of Vector Sand Flies. Journal of Infectious Diseases, 2013, 207, 1328-1338.	1.9	70
75	Incrimination of Phlebotomus kandelakii and Phlebotomus balcanicus as Vectors of Leishmania infantum in Tbilisi, Georgia. PLoS Neglected Tropical Diseases, 2012, 6, e1609.	1.3	28
76	KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi. PLoS Neglected Tropical Diseases, 2012, 6, e1610.	1.3	28
77	Immunity to Sand Fly Salivary Protein LJM11 Modulates Host Response to Vector-Transmitted Leishmania Conferring Ulcer-Free Protection. Journal of Investigative Dermatology, 2012, 132, 2735-2743.	0.3	81
78	Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Review of Vaccines, 2012, 11, 1043-1055.	2.0	117
79	Vaccines to combat the neglected tropical diseases. Immunological Reviews, 2011, 239, 237-270.	2.8	143
80	Expression plasticity of Phlebotomus papatasi salivary gland genes in distinct ecotopes through the sand fly season. BMC Ecology, 2011, 11, 24.	3.0	11
81	Structure and Function of a "Yellow―Protein from Saliva of the Sand Fly Lutzomyia longipalpis That Confers Protective Immunity against Leishmania major Infection. Journal of Biological Chemistry, 2011, 286, 32383-32393.	1.6	102
82	Seasonality and Prevalence of Leishmania major Infection in Phlebotomus duboscqi Neveu-Lemaire from Two Neighboring Villages in Central Mali. PLoS Neglected Tropical Diseases, 2011, 5, e1139.	1.3	41
83	Characterization of a <i>Leishmania</i> stageâ€specific mitochondrial membrane protein that enhances the activity of cytochrome <i>c</i> oxidase and its role in virulence. Molecular Microbiology, 2010, 77, 399-414.	1.2	73
84	Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern. PLoS Pathogens, 2010, 6, e1001185.	2.1	41
85	Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America. PLoS Neglected Tropical Diseases, 2010, 4, e638.	1.3	126
86	Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity. PLoS Pathogens, 2009, 5, e1000484.	2.1	169
87	Sand Fly Salivary Proteins Induce Strong Cellular Immunity in a Natural Reservoir of Visceral Leishmaniasis with Adverse Consequences for Leishmania. PLoS Pathogens, 2009, 5, e1000441.	2.1	148
88	Sand flies, Leishmania, and transcriptome-borne solutions. Parasitology International, 2009, 58, 1-5.	0.6	55
89	Discrepant Prevalence and Incidence of Leishmania Infection between Two Neighboring Villages in Central Mali Based on Leishmanin Skin Test Surveys. PLoS Neglected Tropical Diseases, 2009, 3, e565.	1.3	22
90	In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science, 2008, 321, 970-974.	6.0	719

#	Article	IF	CITATIONS
91	Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7845-7850.	3.3	221
92	Quantification of the infectious dose of <i>Leishmania major</i> transmitted to the skin by single sand flies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10125-10130.	3.3	159
93	Immunity to Distinct Sand Fly Salivary Proteins Primes the Anti-Leishmania Immune Response towards Protection or Exacerbation of Disease. PLoS Neglected Tropical Diseases, 2008, 2, e226.	1.3	118
94	Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies. BMC Genomics, 2007, 8, 300.	1.2	63
95	From transcriptome to immunome: Identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine, 2006, 24, 374-390.	1.7	120
96	Phlebotomine sand flies and Leishmania parasites: friends or foes?. Trends in Parasitology, 2006, 22, 439-445.	1.5	272
97	High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya). BMC Genomics, 2006, 7, 226.	1.2	93
98	Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics, 2006, 7, 52.	1.2	148
99	A Role for Insect Galectins in Parasite Survival. Cell, 2004, 119, 329-341.	13.5	232
100	Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Molecular and Biochemical Parasitology, 2002, 120, 33-40.	0.5	235
101	Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis. Annual Review of Microbiology, 2001, 55, 453-483.	2.9	326
102	Toward a Defined Anti-Leishmania Vaccine Targeting Vector Antigens. Journal of Experimental Medicine, 2001, 194, 331-342.	4.2	359
103	The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes and Infection, 2000, 2, 1765-1773.	1.0	132
104	Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. Journal of Experimental Medicine, 1998, 188, 1941-1953.	4.2	392
105	Species Composition of Sand Flies and Population Dynamics of Phlebotomus papatasi (Diptera:) Tj ETQq1 1 0.78 Medical Entomology, 1995, 32, 822-826.	34314 rgB ⁻ 0.9	T /Overlock 31
106	Gut Microbiota Egested During Bites of Infected Sand flies Augments Severity of Leishmaniasis via Inflammasome-Derived IL-11. SSRN Electronic Journal, 0, , .	0.4	1