Richard D Braatz

List of Publications by Citations

Source: https://exaly.com/author-pdf/9242416/richard-d-braatz-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

434 papers

15,326 citations

64 h-index

110 g-index

499 ext. papers

18,282 ext. citations

4.3 avg, IF

6.97 L-index

#	Paper	IF	Citations
434	Fault Detection and Diagnosis in Industrial Systems 2001,		691
433	Data-driven prediction of battery cycle life before capacity degradation. <i>Nature Energy</i> , 2019 , 4, 383-39	9162.3	498
432	Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. <i>Journal of the Electrochemical Society</i> , 2012 , 159, R31-R45	3.9	436
431	Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2000 , 50, 243-252	3.8	432
430	End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12359-63	16.4	426
429	A tutorial on linear and bilinear matrix inequalities. <i>Journal of Process Control</i> , 2000 , 10, 363-385	3.9	367
428	Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2000 , 51, 81-93	3.8	347
427	Assessment of Recent Process Analytical Technology (PAT) Trends: A Multiauthor Review. <i>Organic Process Research and Development</i> , 2015 , 19, 3-62	3.9	251
426	First-principles and direct design approaches for the control of pharmaceutical crystallization. <i>Journal of Process Control</i> , 2005 , 15, 493-504	3.9	246
425	. IEEE Transactions on Automatic Control, 1994 , 39, 1000-1002	5.9	234
424	Robust nonlinear model predictive control of batch processes. AICHE Journal, 2003, 49, 1776-1786	3.6	233
423	Paracetamol Crystallization Using Laser Backscattering and ATR-FTIR Spectroscopy: Metastability, Agglomeration, and Control. <i>Crystal Growth and Design</i> , 2002 , 2, 363-370	3.5	212
422	Advances and new directions in crystallization control. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2012 , 3, 55-75	8.9	211
421	Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheresa review. <i>Journal of Controlled Release</i> , 2013 , 165, 29-37	11.7	211
420	High resolution algorithms for multidimensional population balance equations. <i>AICHE Journal</i> , 2004 , 50, 2738-2749	3.6	208
419	Closed-loop optimization of fast-charging protocols for batteries with machine learning. <i>Nature</i> , 2020 , 578, 397-402	50.4	191
418	Advanced control of crystallization processes. <i>Annual Reviews in Control</i> , 2002 , 26, 87-99	10.3	178

(2011-2004)

Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. <i>Journal of Process Control</i> , 2004 , 14, 411-422	3.9	169
Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. <i>ACS Nano</i> , 2016 , 10, 4441-50	16.7	152
Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes. <i>Advances in Industrial Control</i> , 2000 ,	0.3	147
Distributional uncertainty analysis using power series and polynomial chaos expansions. <i>Journal of Process Control</i> , 2007 , 17, 229-240	3.9	146
Switched model predictive control of switched linear systems: Feasibility, stability and robustness. <i>Automatica</i> , 2016 , 67, 8-21	5.7	139
Modelling and control of combined cooling and antisolvent crystallization processes. <i>Journal of Process Control</i> , 2008 , 18, 856-864	3.9	136
Comparative performance of concentration and temperature controlled batch crystallizations. Journal of Process Control, 2008 , 18, 399-407	3.9	133
Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. <i>Journal of Crystal Growth</i> , 2001 , 231, 534-543	1.6	131
Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control. <i>Crystal Growth and Design</i> , 2006 , 6, 892-898	3.5	126
Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. <i>Biomaterials</i> , 2014 , 35, 2507-17	15.6	123
High-Resolution Simulation of Multidimensional Crystal Growth. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2002 , 41, 6217-6223	3.9	123
Optimal control and simulation of multidimensional crystallization processes. <i>Computers and Chemical Engineering</i> , 2002 , 26, 1103-1116	4	122
Optimal seeding in batch crystallization. Canadian Journal of Chemical Engineering, 1999 , 77, 590-596	2.3	119
Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. <i>Langmuir</i> , 2008 , 24, 1790-5	4	115
Determination of the Kinetic Parameters for the Crystallization of Paracetamol from Water Using Metastable Zone Width Experiments. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1245-7	1232	115
Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 781-91	3.9	108
Improved Filter Design in Internal Model Control. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 3437-3441	3.9	108
Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1048	3.9	106
	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. <i>ACS Nano</i> , 2016, 10, 4441-50 Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes. <i>Advances in Industrial Control</i> , 2000, Distributional uncertainty analysis using power series and polynomial chaos expansions. <i>Journal of Process Control</i> , 2007, 17, 229-240 Switched model predictive control of switched linear systems: Feasibility, stability and robustness. <i>Automatica</i> , 2016, 67, 8-21 Modelling and control of combined cooling and antisolvent crystallization processes. <i>Journal of Process Control</i> , 2008, 18, 856-864 Comparative performance of concentration and temperature controlled batch crystallizations. <i>Journal of Process Control</i> , 2008, 18, 399-407 Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. <i>Journal of Crystal Growth</i> , 2001, 231, 534-543 Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control. <i>Crystal Growth</i> , 2001, 231, 534-543 Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control. <i>Crystal Growth</i> , 2001, 231, 532-507-17 High-Resolution Simulation of Multidimensional Crystal Growth. <i>Industrial & Discourse and Chemical Engineering</i> , 2002, 41, 6217-6223 Optimal control and simulation of multidimensional crystallization processes. <i>Computers and Chemical Engineering</i> , 2002, 26, 1103-1116 Optimal seeding in batch crystallization. <i>Canadian Journal of Chemical Engineering</i> , 1999, 77, 590-596 Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. <i>Langmuir</i> , 2008, 24, 1790-5 Determination of the Kinetic Parameters for the Crystallization of Paracetamol from Water Using Metastable Zone Width Experiments. <i>Industrial & Discourse of Chemistry Research</i> , 2008, 47, 1245-4019, 33, 3437-3441	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano, 2016, 10, 4441-50 Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes. Advances in Industrial Control, 2000, Distributional uncertainty analysis using power series and polynomial chaos expansions. Journal of Process Control, 2007, 17, 229-240 Switched model predictive control of switched linear systems: Feasibility, stability and robustness. Automatica, 2016, 67, 8-21 Modelling and control of combined cooling and antisolvent crystallization processes. Journal of Process Control, 2008, 18, 856-864 Comparative performance of concentration and temperature controlled batch crystallizations. Journal of Process Control, 2008, 18, 399-407 Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy. Journal of Crystal Growth, 2001, 231, 534-543 Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control. Crystal Growth and Design, 2006, 6, 892-898 Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials, 2014, 35, 2507-17 High-Resolution Simulation of Multidimensional Crystal Growth. Industrial Ramp; Engineering Chemistry Research, 2002, 41, 6217-6223 Optimal control and simulation of multidimensional Crystallization processes. Computers and Chemical Engineering, 2002, 26, 1103-1116 Optimal seeding in batch crystallization. Canadian Journal of Chemical Engineering, 1999, 77, 590-596 2.3 Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir, 4 Determination of the Kinetic Parameters for the Crystallization of Paracetamol from Water Using Metastable Zone Width Experiments. Industrial Ramp; Engineering Chemistry Research, 2008, 47, 1245-1259 Achieving continuous manufacturing; technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium. Journal of Pharamet

399	Effect of pore size on adsorption of hydrocarbons in phenolic-based activated carbon fibers. <i>Carbon</i> , 1998 , 36, 123-129	10.4	101
398	Measurement of particle size distribution in suspension polymerization using in situ laser backscattering. <i>Sensors and Actuators B: Chemical</i> , 2003 , 96, 451-459	8.5	97
397	Constrained zonotopes: A new tool for set-based estimation and fault detection. <i>Automatica</i> , 2016 , 69, 126-136	5.7	95
396	Input design for guaranteed fault diagnosis using zonotopes. <i>Automatica</i> , 2014 , 50, 1580-1589	5.7	93
395	Stochastic nonlinear model predictive control with probabilistic constraints 2014,		93
394	LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1192-A1205	3.9	93
393	Simulation of Mixing Effects in Antisolvent Crystallization Using a Coupled CFD-PDF-PBE Approach. <i>Crystal Growth and Design</i> , 2006 , 6, 1291-1303	3.5	92
392	Process monitoring using causal map and multivariate statistics: fault detection and identification. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2003 , 65, 159-178	3.8	92
391	Robust performance of cross-directional basis-weight control in paper machines. <i>Automatica</i> , 1993 , 29, 1395-1410	5.7	92
390	A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems. <i>Crystal Growth and Design</i> , 2010 , 10, 2515-2521	3.5	89
389	Experimental design and inferential modeling in pharmaceutical crystallization. <i>AICHE Journal</i> , 2001 , 47, 160-168	3.6	86
388	Selective Crystallization of the Metastable Form of l-Glutamic Acid using Concentration Feedback Control. <i>Crystal Growth and Design</i> , 2009 , 9, 3044-3051	3.5	85
387	Adaptive Concentration Control of Cooling and Antisolvent Crystallization with Laser Backscattering Measurement. <i>Crystal Growth and Design</i> , 2009 , 9, 182-191	3.5	83
386	Perspectives on process monitoring of industrial systems. <i>Annual Reviews in Control</i> , 2016 , 42, 190-200	10.3	82
385	Continuous-Flow Tubular Crystallization in Slugs Spontaneously Induced by Hydrodynamics. <i>Crystal Growth and Design</i> , 2014 , 14, 851-860	3.5	78
384	Solution Concentration Prediction for Pharmaceutical Crystallization Processes Using Robust Chemometrics and ATR FTIR Spectroscopy. <i>Organic Process Research and Development</i> , 2002 , 6, 317-322	3.9	76
383	Model-based design of a plant-wide control strategy for a continuous pharmaceutical plant. <i>AICHE Journal</i> , 2013 , 59, 3671-3685	3.6	74
382	Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium. <i>Journal of Pharmaceutical Sciences</i> , 2015 , 104, 832-9	3.9	73

381	State-of-charge estimation in lithium-ion batteries: A particle filter approach. <i>Journal of Power Sources</i> , 2016 , 331, 208-223	8.9	72
380	Canonical variate analysis-based contributions for fault identification. <i>Journal of Process Control</i> , 2015 , 26, 17-25	3.9	71
379	Indirect Ultrasonication in Continuous Slug-Flow Crystallization. <i>Crystal Growth and Design</i> , 2015 , 15, 2486-2492	3.5	70
378	Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A363	3.9	70
377	Review Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3656-A3673	3.9	70
376	Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A1328	3.9	69
375	Worst-case and distributional robustness analysis of finite-time control trajectories for nonlinear distributed parameter systems. <i>IEEE Transactions on Control Systems Technology</i> , 2003 , 11, 694-704	4.8	69
374	Perspectives on the design and control of multiscale systems. <i>Journal of Process Control</i> , 2006 , 16, 193-7	2 <u>9.</u>	67
373	IDENTIFICATION OF KINETIC PARAMETERS IN MULTIDIMENSIONAL CRYSTALLIZATION PROCESSES. <i>International Journal of Modern Physics B</i> , 2002 , 16, 367-374	1.1	66
372	Worst-case analysis of finite-time control policies. <i>IEEE Transactions on Control Systems Technology</i> , 2001 , 9, 766-774	4.8	65
37 ²			6 ₅
	2001 , 9, 766-774		
371	2001, 9, 766-774 Worst-case performance analysis of optimal batch control trajectories. <i>AICHE Journal</i> , 1999 , 45, 1469-14 Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing.	43,66	65
371 370	2001, 9, 766-774 Worst-case performance analysis of optimal batch control trajectories. <i>AICHE Journal</i> , 1999, 45, 1469-14 Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. <i>Biotechnology and Bioengineering</i> , 2017, 114, 2445-2456 Parameter Estimation and Optimization of a Loosely Bound Aggregating Pharmaceutical Crystallization Using in Situ Infrared and Laser Backscattering Measurements. <i>Industrial & Amp</i> ;	4 3.6 4.9	65 64
37 ¹ 37 ⁰ 369	Worst-case performance analysis of optimal batch control trajectories. <i>AICHE Journal</i> , 1999 , 45, 1469-149. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2445-2456 Parameter Estimation and Optimization of a Loosely Bound Aggregating Pharmaceutical Crystallization Using in Situ Infrared and Laser Backscattering Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6168-6181 Optimal model-based experimental design in batch crystallization. <i>Chemometrics and Intelligent</i>	43 6 4.9 3.9	656464
37 ¹ 37 ⁰ 369	Worst-case performance analysis of optimal batch control trajectories. <i>AICHE Journal</i> , 1999 , 45, 1469-14. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2445-2456 Parameter Estimation and Optimization of a Loosely Bound Aggregating Pharmaceutical Crystallization Using in Situ Infrared and Laser Backscattering Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6168-6181 Optimal model-based experimental design in batch crystallization. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2000 , 50, 83-90 Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force	4366 4.9 3.9	65646464
371 370 369 368 367	Worst-case performance analysis of optimal batch control trajectories. AICHE Journal, 1999, 45, 1469-14. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnology and Bioengineering, 2017, 114, 2445-2456 Parameter Estimation and Optimization of a Loosely Bound Aggregating Pharmaceutical Crystallization Using in Situ Infrared and Laser Backscattering Measurements. Industrial & Designation and Chemistry Research, 2004, 43, 6168-6181 Optimal model-based experimental design in batch crystallization. Chemometrics and Intelligent Laboratory Systems, 2000, 50, 83-90 Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging. ACS Nano, 2015, 9, 2843-55 Modeling and Computational Fluid Dynamics Population Balance Equation Micromixing	4.9 3.9 3.8 16.7	6564646463

363	Wiener's Polynomial Chaos for the Analysis and Control of Nonlinear Dynamical Systems with Probabilistic Uncertainties [Historical Perspectives]. <i>IEEE Control Systems</i> , 2013 , 33, 58-67	2.9	60
362	A combined canonical variate analysis and Fisher discriminant analysis (CVAEDA) approach for fault diagnosis. <i>Computers and Chemical Engineering</i> , 2015 , 77, 1-9	4	59
361	The Application of an Automated Control Strategy for an Integrated Continuous Pharmaceutical Pilot Plant. <i>Organic Process Research and Development</i> , 2015 , 19, 1088-1100	3.9	59
360	Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation. <i>Journal of the Electrochemical Society</i> , 2014 , 161, E3149-E3157	3.9	57
359	End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. <i>Angewandte Chemie</i> , 2013 , 125, 12585-12589	3.6	56
358	Diagnosis of multiple and unknown faults using the causal map and multivariate statistics. <i>Journal of Process Control</i> , 2015 , 28, 27-39	3.9	53
357	Identification and cross-directional control of coating processes. AICHE Journal, 1992, 38, 1329-1339	3.6	53
356	Designs of continuous-flow pharmaceutical crystallizers: developments and practice. CrystEngComm, 2019 , 21, 3534-3551	3.3	51
355	Challenges and opportunities in biopharmaceutical manufacturing control. <i>Computers and Chemical Engineering</i> , 2018 , 110, 106-114	4	51
354	Effect of Additives on Shape Evolution during Electrodeposition. <i>Journal of the Electrochemical Society</i> , 2007 , 154, D230	3.9	50
353	A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 2269-79	5.4	49
352	Modification of Crystal Shape through Deep Temperature Cycling. <i>Industrial & Deep Temperature Cycling</i> .	3.9	49
351	Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system. <i>Building and Environment</i> , 2015 , 92, 407-417	6.5	49
350	Commemorating Norbert Wiener's 120th Anniversary [Historical Perspectives]. <i>IEEE Control Systems</i> , 2013 , 33, 61-61	2.9	49
349	On-demand manufacturing of clinical-quality biopharmaceuticals. <i>Nature Biotechnology</i> , 2018 ,	44.5	49
348	Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals. <i>AICHE Journal</i> , 2008 , 54, 3248-3259	3.6	48
347	Optimal charging profiles for mechanically constrained lithium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 277-87	3.6	47
346	SVD controllers for H2‡Hænd Ebptimal control. <i>Automatica</i> , 1997 , 33, 433-439	5.7	46

(2000-1995)

345	Screening tools for robust control structure selection. <i>Automatica</i> , 1995 , 31, 229-235	5.7	45	
344	Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models. <i>Journal of the Electrochemical Society</i> , 2014 , 161, F3144-F3155	3.9	44	
343	Robust optimal control of polymorphic transformation in batch crystallization. <i>AICHE Journal</i> , 2007 , 53, 2643-2650	3.6	44	
342	Coupled mesoscaleBontinuum simulations of copper electrodeposition in a trench. <i>AICHE Journal</i> , 2004 , 50, 226-240	3.6	44	
341	Closed-loop input design for guaranteed fault diagnosis using set-valued observers. <i>Automatica</i> , 2016 , 74, 107-117	5.7	44	
340	Stochastic model predictive control with joint chance constraints. <i>International Journal of Control</i> , 2020 , 93, 126-139	1.5	42	
339	Nonlinear model predictive control for the polymorphic transformation of L-glutamic acid crystals. <i>AICHE Journal</i> , 2009 , 55, 2631-2645	3.6	41	
338	Parallel high-resolution finite volume simulation of particulate processes. <i>AICHE Journal</i> , 2008 , 54, 14	49-3 .∉ 58	41	
337	Cross-directional control of sheet and film processes. <i>Automatica</i> , 2007 , 43, 191-211	5.7	40	
336	A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition. <i>Journal of Computational Physics</i> , 2008 , 227, 5184-5199	4.1	40	
335	Effect of Additives on Shape Evolution during Electrodeposition. <i>Journal of the Electrochemical Society</i> , 2007 , 154, D584	3.9	40	
334	Robust identification and control of batch processes. <i>Computers and Chemical Engineering</i> , 2003 , 27, 1175-1184	4	40	
333	Parameter Sensitivity Analysis of Monte Carlo Simulations of Copper Electrodeposition with Multiple Additives. <i>Journal of the Electrochemical Society</i> , 2003 , 150, C807	3.9	39	
332	Perspectivellombining Physics and Machine Learning to Predict Battery Lifetime. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 030525	3.9	39	
331	Precise tailoring of the crystal size distribution by controlled growth and continuous seeding from impinging jet crystallizers. <i>CrystEngComm</i> , 2011 , 13, 2006	3.3	38	
330	Fast model predictive control of sheet and film processes. <i>IEEE Transactions on Control Systems Technology</i> , 2000 , 8, 408-417	4.8	38	
329	Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction. <i>PLoS Biology</i> , 2009 , 7, e1000262	9.7	37	
328	Identification and Control of Sheet and Film Processes. Advances in Industrial Control, 2000,	0.3	37	

327	Fixed Bed Adsorption of Acetone and Ammonia onto Oxidized Activated Carbon Fibers. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3499-3504	3.9	37
326	Multi-Scale Simulation of Heterogeneous Surface Film Growth Mechanisms in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017 , 164, E3335-E3344	3.9	36
325	Towards achieving a flattop crystal size distribution by continuous seeding and controlled growth. <i>Chemical Engineering Science</i> , 2012 , 77, 2-9	4.4	36
324	Integrated batch-to-batch and nonlinear model predictive control for polymorphic transformation in pharmaceutical crystallization. <i>AICHE Journal</i> , 2011 , 57, 1008-1019	3.6	36
323	Control of defect concentrations within a semiconductor through adsorption. <i>Physical Review Letters</i> , 2006 , 97, 055503	7.4	36
322	Nucleation and growth kinetics estimation for L-phenylalanine hydrate and anhydrate crystallization. <i>CrystEngComm</i> , 2011 , 13, 1197	3.3	35
321	Minimizing the Euclidean Condition Number. SIAM Journal on Control and Optimization, 1994, 32, 1763-	17.698	35
320	Model Predictive Control of an Integrated Continuous Pharmaceutical Manufacturing Pilot Plant. Organic Process Research and Development, 2017 , 21, 844-854	3.9	34
319	Free surface electrospinning of aqueous polymer solutions from a wire electrode. <i>Chemical Engineering Journal</i> , 2016 , 289, 203-211	14.7	34
318	Optimum Charging Profile for Lithium-Ion Batteries to Maximize Energy Storage and Utilization. <i>ECS Transactions</i> , 2009 , 25, 139-146	1	34
317	Selective Crystallization of the Metastable Anhydrate Form in the Enantiotropic Pseudo-Dimorph System of l-Phenylalanine using Concentration Feedback Control. <i>Crystal Growth and Design</i> , 2009 , 9, 3052-3061	3.5	34
316	Multiscale simulations of copper electrodeposition onto a resistive substrate. <i>IBM Journal of Research and Development</i> , 2005 , 49, 49-63	2.5	34
315	Real-time model predictive control for the optimal charging of a lithium-ion battery 2015,		33
314	Nucleation and Growth Kinetics for Combined Cooling and Antisolvent Crystallization in a Mixed-Suspension, Mixed-Product Removal System: Estimating Solvent Dependency. <i>Crystal Growth and Design</i> , 2018 , 18, 1560-1570	3.5	33
313	Multiple-bond kinetics from single-molecule pulling experiments: evidence for multiple NCAM bonds. <i>Biophysical Journal</i> , 2005 , 89, 3434-45	2.9	33
312	Stochastic Simulation of the Early Stages of Kinetically Limited Electrodeposition. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C434	3.9	33
311	Coarse-Grained Kinetic Monte Carlo Simulation of Copper Electrodeposition with Additives. <i>International Journal for Multiscale Computational Engineering</i> , 2004 , 2, 313-327	2.4	33
310	Maximum A posteriori estimation of transient enhanced diffusion energetics. <i>AICHE Journal</i> , 2003 , 49, 2114-2123	3.6	32

(2010-2004)

309	Effect of near-surface band bending on dopant profiles in ion-implanted silicon. <i>Journal of Applied Physics</i> , 2004 , 95, 1134-1140	2.5	31
308	Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 97, 242-247	3.7	30
307	Fault detection of process correlation structure using canonical variate analysis-based correlation features. <i>Journal of Process Control</i> , 2017 , 58, 131-138	3.9	30
306	Integrated Robust Identification and Control of Large-Scale Processes. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 97-106	3.9	29
305	Fault detection and identification using Bayesian recurrent neural networks. <i>Computers and Chemical Engineering</i> , 2020 , 141, 106991	4	29
304	Canonical variate analysis-based monitoring of process correlation structure using causal feature representation. <i>Journal of Process Control</i> , 2015 , 32, 109-116	3.9	28
303	Active Fault Diagnosis for Nonlinear Systems with Probabilistic Uncertainties. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 7079-7084		28
302	Control of self-assembly in micro- and nano-scale systems. <i>Journal of Process Control</i> , 2015 , 27, 38-49	3.9	27
301	Control-oriented modeling of sheet and film processes. AICHE Journal, 1997, 43, 1989-2001	3.6	27
300	Model predictive control of large scale processes. <i>Journal of Process Control</i> , 2000 , 10, 1-8	3.9	27
299	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. <i>Nature Materials</i> , 2021 , 20, 991-999	27	27
298	Continuous Heterogeneous Crystallization on Excipient Surfaces. <i>Crystal Growth and Design</i> , 2017 , 17, 3321-3330	3.5	26
297	Systems analysis and design of dynamically coupled multiscale reactor simulation codes. <i>Chemical Engineering Science</i> , 2004 , 59, 5607-5613	4.4	26
296	Fault-tolerant model predictive control with active fault isolation 2013,		25
295	Modelling intravascular delivery from drug-eluting stents with biodurable coating: investigation of anisotropic vascular drug diffusivity and arterial drug distribution. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2014 , 17, 187-98	2.1	25
294	Polynomial chaos-based robust design of systems with probabilistic uncertainties. <i>AICHE Journal</i> , 2016 , 62, 3310-3318	3.6	25
293	Optimal control and state estimation of lithium-ion batteries using reformulated models 2013,		24
292	A thin-shell two-phase microstructural model for blown film extrusion. <i>Journal of Rheology</i> , 2010 , 54, 471-505	4.1	24

291	Robust nonlinear feedbackfeedforward control of a coupled kinetic Monte Carlofinite difference simulation. <i>Journal of Process Control</i> , 2006 , 16, 409-417	3.9	24
290	Pair diffusion and kick-out: Contributions to diffusion of boron in silicon. AICHE Journal, 2004, 50, 3248-	3 2.6 6	24
289	Multiscale systems engineering with applications to chemical reaction processes. <i>Chemical Engineering Science</i> , 2004 , 59, 5623-5628	4.4	24
288	Dynamic modeling of blown-film extrusion. <i>Polymer Engineering and Science</i> , 2003 , 43, 398-418	2.3	24
287	Analysis of Finite Difference Discretization Schemes for Diffusion in Spheres with Variable Diffusivity. <i>Computers and Chemical Engineering</i> , 2014 , 71, 241-252	4	23
286	Fast stochastic model predictive control of high-dimensional systems 2014 ,		23
285	Robust nonlinear internal model control of stable Wiener systems. <i>Journal of Process Control</i> , 2012 , 22, 1468-1477	3.9	23
284	Ramp-Rate Effects on Transient Enhanced Diffusion and Dopant Activation. <i>Journal of the Electrochemical Society</i> , 2003 , 150, G838	3.9	23
283	Identification of nucleation rates in droplet-based microfluidic systems. <i>Chemical Engineering Science</i> , 2012 , 77, 235-241	4.4	22
282	MULTIDIMENSIONAL REALIZATION OF LARGE SCALE UNCERTAIN SYSTEMS FOR MULTIVARIABLE STABILITY MARGIN COMPUTATION. <i>International Journal of Robust and Nonlinear Control</i> , 1997 , 7, 113-	125	22
281	Robust cross-directional control of large scale sheet and film processes. <i>Journal of Process Control</i> , 2001 , 11, 149-177	3.9	22
280	Two-Dimensional Contribution Map for Fault Identification [Focus on Education]. <i>IEEE Control Systems</i> , 2014 , 34, 72-77	2.9	21
279	High-order simulation of polymorphic crystallization using weighted essentially nonoscillatory methods. <i>AICHE Journal</i> , 2009 , 55, 122-131	3.6	21
278	Model reduction for the robustness margin computation of large scale uncertain systems. <i>Computers and Chemical Engineering</i> , 1998 , 22, 913-926	4	21
277	Effect of Additives on Shape Evolution during Electrodeposition. <i>Journal of the Electrochemical Society</i> , 2008 , 155, D223	3.9	21
276	Parameter Sensitivity Analysis Applied to Modeling Transient Enhanced Diffusion and Activation of Boron in Silicon. <i>Journal of the Electrochemical Society</i> , 2003 , 150, G758	3.9	21
275	Optimal control of rapid thermal annealing in a semiconductor process. <i>Journal of Process Control</i> , 2004 , 14, 423-430	3.9	21
274	SIMULATION AND NEW SENSOR TECHNOLOGIES FOR INDUSTRIAL CRYSTALLIZATION: A REVIEW. International Journal of Modern Physics B, 2002, 16, 346-353	1.1	21

273	COMPARTMENTAL MODELING OF MULTIDIMENSIONAL CRYSTALLIZATION. <i>International Journal of Modern Physics B</i> , 2002 , 16, 383-390	1.1	21
272	Screening plant designs and control structures for uncertain systems. <i>Computers and Chemical Engineering</i> , 1996 , 20, 463-468	4	21
271	Robust control for a noncollocated spring-mass system. <i>Journal of Guidance, Control, and Dynamics</i> , 1992 , 15, 1103-1110	2.1	21
270	Globally optimal robust process control. <i>Journal of Process Control</i> , 1999 , 9, 375-383	3.9	20
269	Locality preserving discriminative canonical variate analysis for fault diagnosis. <i>Computers and Chemical Engineering</i> , 2018 , 117, 309-319	4	20
268	Gypsum Crystallization during Phosphoric Acid Production: Modeling and Experiments Using the Mixed-Solvent-Electrolyte Thermodynamic Model. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 7914-7924	3.9	19
267	Learning the Physics of Pattern Formation from Images. <i>Physical Review Letters</i> , 2020 , 124, 060201	7.4	19
266	Generalised polynomial chaos expansion approaches to approximate stochastic model predictive control <i>International Journal of Control</i> , 2013 , 86, 1324-1337	1.5	19
265	Interstitial charge states in boron-implanted silicon. <i>Journal of Applied Physics</i> , 2005 , 97, 063520	2.5	19
264	Robustness analysis, prediction, and estimation for uncertain biochemical networks: An overview. <i>Journal of Process Control</i> , 2016 , 42, 14-34	3.9	19
263	Just-in-Time-Learning based Extended Prediction Self-Adaptive Control for batch processes. Journal of Process Control, 2016 , 43, 1-9	3.9	19
262	Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 97, 213-232	3.7	18
261	Mathematical modeling and optimal design of multi-stage slug-flow crystallization. <i>Computers and Chemical Engineering</i> , 2016 , 95, 240-248	4	18
260	Control of nano and microchemical systems. Computers and Chemical Engineering, 2013, 51, 149-156	4	18
259	Globally optimal robust control for systems with time-varying nonlinear perturbations. <i>Computers and Chemical Engineering</i> , 1997 , 21, S125-S130	4	18
258	A method for quantifying annihilation rates of bulk point defects at surfaces. <i>Journal of Applied Physics</i> , 2005 , 98, 013524	2.5	18
257	Optimal charging of an electric vehicle battery pack: A real-time sensitivity-based model predictive control approach. <i>Journal of Power Sources</i> , 2020 , 461, 228133	8.9	18
256	Optimal Health-aware Charging Protocol for Lithium-ion Batteries: A Fast Model Predictive Control Approach. <i>IFAC-PapersOnLine</i> , 2016 , 49, 827-832	0.7	18

255	Sparse canonical variate analysis approach for process monitoring. <i>Journal of Process Control</i> , 2018 , 71, 90-102	3.9	18
254	Economical control of indoor air quality in underground metro station using an iterative dynamic programming-based ventilation system. <i>Indoor and Built Environment</i> , 2016 , 25, 949-961	1.8	17
253	Design of active inputs for set-based fault diagnosis 2013 ,		17
252	A multiscale systems approach to microelectronic processes. <i>Computers and Chemical Engineering</i> , 2006 , 30, 1643-1656	4	17
251	Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. <i>Molecular Therapy - Methods and Clinical Development</i> , 2021 , 20, 740-754	6.4	17
250	Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities. <i>Computers and Chemical Engineering</i> , 2015 , 80, 30-36	4	16
249	Multiscale Modeling and Simulation of Macromixing, Micromixing, and Crystal Size Distribution in Radial Mixers/Crystallizers. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 5433-5441	3.9	16
248	Mathematical modeling and design of layer crystallization in a concentric annulus with and without recirculation. <i>AICHE Journal</i> , 2013 , 59, 1308-1321	3.6	16
247	Principal Component Analysis of Process Datasets with Missing Values. <i>Processes</i> , 2017 , 5, 38	2.9	16
246	The chemical dynamics of nanosensors capable of single-molecule detection. <i>Journal of Chemical Physics</i> , 2011 , 135, 084124	3.9	16
245	Robustness analysis for systems with ellipsoidal uncertainty. <i>International Journal of Robust and Nonlinear Control</i> , 1998 , 8, 1113-1117	3.6	16
244	Crystallization of Calcium Sulphate During Phosphoric Acid Production: Modeling Particle Shape and Size Distribution. <i>Procedia Engineering</i> , 2016 , 138, 390-402		16
243	Standard representation and unified stability analysis for dynamic artificial neural network models. <i>Neural Networks</i> , 2018 , 98, 251-262	9.1	16
242	Design of Piecewise Affine and Linear Time-Varying Model Predictive Control Strategies for Advanced Battery Management Systems. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A949-A959	3.9	15
241	Modeling and Bayesian parameter estimation for semibatch pH-shift reactive crystallization of l-glutamic acid. <i>AICHE Journal</i> , 2014 , 60, 2828-2838	3.6	15
240	Averaging Level Control to Reduce Off-Spec Material in a Continuous Pharmaceutical Pilot Plant. <i>Processes</i> , 2013 , 1, 330-348	2.9	15
239	Precursor mechanism for interaction of bulk interstitial atoms with Si(100). <i>Physical Review B</i> , 2006 , 74,	3.3	15
238	Electrochemical engineering in an age of discovery and innovation. <i>AICHE Journal</i> , 2004 , 50, 2000-2007	3.6	15

237	Input Design for Large-Scale Sheet and Film Processes. <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> . <i>Industrial & Design for Large-Scale Sheet and Film Processes</i> .	3.9	15	
236	Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems. <i>Computers and Chemical Engineering</i> , 2019 , 121, 722-735	4	15	
235	Low-Cost Noninvasive Real-Time Imaging for Tubular Continuous-Flow Crystallization. <i>Chemical Engineering and Technology</i> , 2018 , 41, 143-148	2	14	
234	Nonlinear Model-Based Control of Thin-Film Drying for Continuous Pharmaceutical Manufacturing. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 7447-7460	3.9	14	
233	Modeling and analysis of drug-eluting stents with biodegradable PLGA coating: consequences on intravascular drug delivery. <i>Journal of Biomechanical Engineering</i> , 2014 , 136,	2.1	14	
232	Skewed structured singular value-based approach for the construction of design spaces: theory and applications. <i>IET Control Theory and Applications</i> , 2014 , 8, 1321-1327	2.5	14	
231	Parameter Sensitivity Analysis of Pit Initiation at Single Sulfide Inclusions in Stainless Steel. <i>Journal of the Electrochemical Society</i> , 2004 , 151, B90	3.9	14	
230	Multi-Scale Modeling of Solid Electrolyte Interface Formation in Lithium-Ion Batteries. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 157-162	0.6	14	
229	(Invited) Analyzing and Minimizing Capacity Fade through Optimal Model-based Control - Theory and Experimental Validation. <i>ECS Transactions</i> , 2017 , 75, 51-75	1	13	
228	Integrated B2B-NMPC control strategy for batch/semibatch crystallization processes. <i>AICHE Journal</i> , 2017 , 63, 5007-5018	3.6	13	
227	A new mathematical model for monitoring the temporal evolution of the ice crystal size distribution during freezing in pharmaceutical solutions. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2020 , 148, 148-159	5.7	13	
226	Instabilities and multiplicities in non-isothermal blown film extrusion including the effects of crystallization. <i>Journal of Process Control</i> , 2011 , 21, 405-414	3.9	13	
225	Monte Carlo Simulation of Kinetically Limited Electrodeposition on a Surface with Metal Seed Clusters. <i>Zeitschrift Fur Physikalische Chemie</i> , 2007 , 221, 1287-1305	3.1	13	
224	The Materials Research Platform: Defining the Requirements from User Stories. <i>Matter</i> , 2019 , 1, 1433-1	4 <u>3</u> 87	13	
223	BEEP: A Python library for Battery Evaluation and Early Prediction. SoftwareX, 2020, 11, 100506	2.7	12	
222	Fault detection for uncertain LPV systems using probabilistic set-membership parity relation. Journal of Process Control, 2020 , 87, 27-36	3.9	12	
221	Real-time Nonlinear Model Predictive Control (NMPC) Strategies using Physics-Based Models for Advanced Lithium-ion Battery Management System (BMS). <i>Journal of the Electrochemical Society</i> , 2020 , 167, 063505	3.9	12	
220	Incorporating Solvent-Dependent Kinetics To Design a Multistage, Continuous, Combined Cooling/Antisolvent Crystallization Process. <i>Organic Process Research and Development</i> , 2019 , 23, 1960-	1969	12	

219	Efficient Polynomial-Time Outer Bounds on State Trajectories for Uncertain Polynomial Systems Using Skewed Structured Singular Values. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 3063-3068	5.9	12
218	2013,		12
217	Robustness margin computation for large scale systems. <i>Computers and Chemical Engineering</i> , 1999 , 23, 1021-1030	4	12
216	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration. <i>Organic Process Research and Development</i> , 2020 , 24, 1891-1908	3.9	12
215	openCrys: Open-Source Software for the Multiscale Modeling of Combined Antisolvent and Cooling Crystallization in Turbulent Flow. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 11702-1171	1 ^{3.9}	11
214	JITL-based concentration control for semi-batch pH-shift reactive crystallization of l-glutamic acid. <i>Journal of Process Control</i> , 2014 , 24, 415-421	3.9	11
213	Generalized polynomial chaos expansion approaches to approximate stochastic receding horizon control with applications to probabilistic collision checking and avoidance 2012 ,		11
212	Active fault diagnosis using moving horizon input design 2013,		11
211	Semiautomated Identification of the Phase Diagram for Enantiotropic Crystallizations using ATR-FTIR Spectroscopy and Laser Backscattering. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1488-1495	3.9	11
210	Mechanistic benefits of millisecond annealing for diffusion and activation of boron in silicon. Journal of Applied Physics, 2009 , 105, 063514	2.5	11
209	Quantifying the potential benefits of constrained control for a large-scale system. <i>IET Control Theory and Applications</i> , 2002 , 149, 423-432		11
208	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. <i>Organic Process Research and Development</i> , 2020 , 24, 1861-1875	3.9	11
207	Measurement of defect-mediated diffusion: The case of silicon self-diffusion. <i>AICHE Journal</i> , 2006 , 52, 366-370	3.6	10
206	Identification, Estimation, and Control of Sheet and Film Processes. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1996 , 29, 6638-6643		10
205	Smart process analytics for predictive modeling. <i>Computers and Chemical Engineering</i> , 2021 , 144, 10713	44	10
204	Optimal Experimental Design for Probabilistic Model Discrimination Using Polynomial Chaos. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 4103-4109		9
203	Guaranteed active fault diagnosis for uncertain nonlinear systems 2014,		9
202	Applicability of Birth D eath Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1690-1694	6.4	9

201	ON THE STABILITY OF SYSTEMS WITH MIXED TIME-VARYING PARAMETERS. International Journal of Robust and Nonlinear Control, 1997 , 7, 105-112	3.6	9	
200	Comparison of the dynamic thin shell and quasi-cylindrical models for blown film extrusion. <i>Polymer Engineering and Science</i> , 2004 , 44, 1267-1276	<u>2</u> .3	9	
199	Robust cross-directional control of large scale paper machines		9	
198	A method for learning a sparse classifier in the presence of missing data for high-dimensional biological datasets. <i>Bioinformatics</i> , 2017 , 33, 2897-2905	7.2	8	
197	Perspectives on Process Monitoring of Industrial Systems??BP is acknowledged for funding <i>IFAC-PapersOnLine</i> , 2015 , 48, 931-939	0.7	8	
196	Mathematical modelling of the evolution of the particle size distribution during ultrasound-induced breakage of aspirin crystals. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 170-177	5.5	8	
195	Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2018 , 122, 25-36	5.7	8	
194	On stability of stochastic linear systems via polynomial chaos expansions 2017 ,		8	
193	Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres. <i>PLoS ONE</i> , 2015 , 10, e0135506	3.7	8	
192	Distributional uncertainty analysis using polynomial chaos expansions 2010 ,		8	
191	Maximum a posteriori estimation of activation energies that control silicon self-diffusion. Automatica, 2008 , 44, 2241-2247	5.7	8	
190	Control relevant identification of sheet and film processes		8	
189	Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM. <i>Computers and Chemical Engineering</i> , 2019 , 123, 246-256	4	8	
188	Analysis of focused indirect ultrasound via high-speed spatially localized pressure sensing and its consequences on nucleation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2017 , 117, 186 ²	3 ₁ 7 ₉ 4	7	
187	Understanding temperature-induced primary nucleation in dual impinging jet mixers. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 97, 187-194	3.7	7	
186	Nonlinear model predictive control using polynomial optimization methods 2016,		7	
185	Plant-wide model predictive control for a continuous pharmaceutical process 2015,		7	
184	Optimal Low Temperature Charging of Lithium-ion Batteries. <i>IFAC-PapersOnLine</i> , 2015 , 48, 1216-1221	0.7	7	

183	Observer-based output feedback control of discrete-time Lurßystems with sector-bounded slope-restricted nonlinearities. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 2458-24	7 3 .6	7
182	Fast moving horizon estimation for a two-dimensional distributed parameter system. <i>Computers and Chemical Engineering</i> , 2014 , 63, 159-172	4	7
181	A model-based approach for the construction of design spaces in quality-by-design 2012 ,		7
180	Robustness Analysis, Prediction and Estimation for Uncertain Biochemical Networks. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 1-20		7
179	Ellipsoid bounds on state trajectories for discrete-time systems with time-invariant and time-varying linear fractional uncertainties 2011 ,		7
178	Robust reliable decentralized control		7
177	EditorsIChoiceBerspectiveIChallenges in Moving to Multiscale Battery Models: Where Electrochemistry Meets and Demands More from Math. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 133501	3.9	7
176	Multi-phase particle-in-cell coupled with population balance equation (MP-PIC-PBE) method for multiscale computational fluid dynamics simulation. <i>Computers and Chemical Engineering</i> , 2020 , 134, 106686	4	7
175	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 2: Enone Synthesis via a Barbier-Type Grignard Process. <i>Organic Process Research and Development</i> , 2020 , 24, 1876-1890	3.9	7
174	Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. <i>Molecular Therapy - Methods and Clinical Development</i> , 2021 , 21, 642-655	6.4	7
173	Ellipsoidal bounds on state trajectories for discrete-time systems with linear fractional uncertainties. <i>Optimization and Engineering</i> , 2015 , 16, 695-711	2.1	6
172	A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis. <i>Bioprocess and Biosystems Engineering</i> , 2018 , 41, 641-655	3.7	6
171	Output feedback model predictive control with probabilistic uncertainties for linear systems 2016,		6
170	On the Analysis of the Eigenvalues of Uncertain Matrices by \$mu\$ and \$nu\$: Applications to Bifurcation Avoidance and Convergence Rates. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 748-75	53 ^{5.9}	6
169	A Hybrid Stochastic-Deterministic Approach For Active Fault Diagnosis Using Scenario Optimization. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 110)2-110	07 ⁶
168	Optimum input design for fault detection and diagnosis: Model-based prediction and statistical distance measures 2013 ,		6
167	Multi-Scale Modeling of PLGA Microparticle Drug Delivery Systems. <i>Computer Aided Chemical Engineering</i> , 2011 , 29, 1475-1479	0.6	6
166	Efficient polynomial-time outer bounds on state trajectories for uncertain polynomial systems using skewed structured singular values 2011 ,		6

165	On Internal Stability and Unstable Pole-Zero Cancellations [Feedback]. <i>IEEE Control Systems</i> , 2012 , 32, 15-16		6
164	Multiscale Modeling and Design of Electrochemical Systems. <i>Advances in Electrochemical Science and Engineering</i> , 2008 , 289-334		6
163	The average-case identifiability and controllability of large scale systems. <i>Journal of Process Control</i> , 2002 , 12, 823-829		6
162	On the Computation of Disturbance Rejection Measures. <i>Industrial & Disturbance Rejection Measures</i> . <i>Disturbance Rejection Measures</i> . <i>Disturb</i>		6
161	Comparison of theoretical and computational characteristics of dimensionality reduction methods for large-scale uncertain systems. <i>Journal of Process Control</i> , 2001 , 11, 543-552		6
160	Opportunities in tensorial data analytics for chemical and biological manufacturing processes. **Computers and Chemical Engineering, 2020, 143, 107099** 4		6
159	An Analytical Solution for Exciton Generation, Reaction, and Diffusion in Nanotube and Nanowire-Based Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2683-8		6
158	Demonstration of pharmaceutical tablet coating process by injection molding technology. International Journal of Pharmaceutics, 2018, 535, 106-112 6.5		6
157	Papers Receive More Citations After Rejection [Publication Activities]. <i>IEEE Control Systems</i> , 2014 , 34, 22-23		5
156	On Precision Robotics and a World-Class Control Engineer [From the Editor]. <i>IEEE Control Systems</i> , 2.9		5
155	Towards adaptive health-aware charging of Li-ion batteries: A real-time predictive control approach using first-principles models 2017 ,		5
154	Current Needs in Electrochemical Engineering Education. <i>Electrochemical Society Interface</i> , 2010 , 19, 37-38		5
153	Universal approximation with error bounds for dynamic artificial neural network models: A tutorial and some new results 2011 ,		5
152	Worst-case analysis of distributed parameter systems with application to the 2D reaction diffusion equation. <i>Optimal Control Applications and Methods</i> , 2010 , 31, 433-449		5
151	RECENT ADVANCES IN THE MODELLING AND CONTROL OF COOLING AND ANTISOLVENT CRYSTALLIZATION OF PHARMACEUTICALS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2007 , 40, 29-38		5
150	Controllability of Processes with Large Singular Values. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6155-6165		5
149	A robust chemometrics approach to inferential estimation of supersaturation 2000,		5
148	Loopshaping for robust performance. International Journal of Robust and Nonlinear Control, 1996, 6, 805-982.	3	5

147	Computational complexity of Italculation 1993,		5
146	Bayesian learning for rapid prediction of lithium-ion battery-cycling protocols. <i>Joule</i> , 2021 ,	27.8	5
145	Macroscopic modeling of bioreactors for recombinant protein producing Pichia pastoris in defined medium. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 1199-1212	4.9	5
144	Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnology Advances, 2021, 49, 107764	17.8	5
143	Robust static and fixed-order dynamic output feedback control of discrete-time parametric uncertain Lur systems: Sequential SDP relaxation approaches. <i>Optimal Control Applications and Methods</i> , 2017 , 38, 36-58	1.7	4
142	Monitoring and Advanced Control of Crystallization Processes 2019 , 313-345		4
141	Volume maximization of consistent parameter sets for linear fractional models 2014,		4
140	Nonlinear Model Predictive Control of Systems with Probabilistic Time-invariant Uncertainties**Financial support is acknowledged from the NSF Graduate Re-search Fellowship and Novartis Pharma AGhttp://www.hamecmopsys.ens2m.fr/ <i>IFAC-PapersOnLine</i> , 2015 , 48, 16-25	0.7	4
139	Quality-by-design by skewed spherical structured singular value. <i>IET Control Theory and Applications</i> , 2015 , 9, 2202-2210	2.5	4
138	Control systems technology in the advanced manufacturing of biologic drugs 2015,		4
137	On the Analysis of Robust Stability of Metabolic Pathways [Focus on Education]. <i>IEEE Control Systems</i> , 2012 , 32, 92-94	2.9	4
136	Optimal Control of One-dimensional Cellular Uptake in Tissue Engineering. <i>Optimal Control Applications and Methods</i> , 2013 , 34, 680-695	1.7	4
135	State of Charge Estimation in Li-ion Batteries Using an Isothermal Pseudo Two-Dimensional Model. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 135-140		4
134	State-constrained optimal spatial field control for controlled release in tissue engineering 2010,		4
133	Identification of Chirality-Dependent Adsorption Kinetics in Single-Walled Carbon Nanotube Reaction Networks. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 2581-2585	0.3	4
132	On the "Identification and control of dynamical systems using neural networks". <i>IEEE Transactions on Neural Networks</i> , 1997 , 8, 452		4
131	Globally optimal robust control of large scale sheet and film processes 1997,		4
130	Model Predictive Control of Large Scale Processes. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1998 , 31, 153-158		4

129	Handling State and Output Constraints in MPC Using Time-dependent Weights. <i>Modeling, Identification and Control</i> , 2004 , 25, 67-84	1	4
128	Mathematical modeling and experimental validation of continuous slug-flow tubular crystallization with ultrasonication-induced nucleation and spatially varying temperature. <i>Chemical Engineering Research and Design</i> , 2021 , 169, 275-287	5.5	4
127	Optimal charging of a Li-ion cell: A hybrid Model Predictive Control approach 2016 ,		4
126	Robust optimal control for the maximization of design space 2015,		3
125	ALVEN: Algebraic learning via elastic net for static and dynamic nonlinear model identification. <i>Computers and Chemical Engineering</i> , 2020 , 143, 107103	4	3
124	An internal model control design method for failure-tolerant control with multiple objectives. <i>Computers and Chemical Engineering</i> , 2020 , 140, 106955	4	3
123	Control on a molecular scale: A perspective 2016 ,		3
122	A robust dual-mode MPC approach to ensuring critical quality attributes in Quality-by-Design 2016 ,		3
121	Closed-Loop Active Fault Diagnosis for Stochastic Linear Systems 2018 ,		3
120	Reproducible research [From the Editor]. IEEE Control Systems, 2014, 34, 6-7	2.9	3
119	Pervaporation of emulsion droplets for the templated assembly of spherical particles: A population balance model. <i>AICHE Journal</i> , 2013 , 59, 3975-3985	3.6	3
118	The Efficiency of the Power of One (or Zero) [From the Editor]. IEEE Control Systems, 2012, 32, 6-7	2.9	3
117	The First Nobel Prize in Control Engineering [From the Editor]. IEEE Control Systems, 2013, 33, 6-7	2.9	3
116	Maximum-Likelihood Parameter Estimation for the Thin-Shell Quasi-Newtonian Model for a Laboratory Blown Film Extruder. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 8007-8015	3.9	3
115	Standard representation and stability analysis of dynamic artificial neural networks: A unified approach 2011 ,		3
114	An improved model for boron diffusion and activation in silicon. AICHE Journal, 2009, 56, NA-NA	3.6	3
113	Process control laboratory education using a graphical operator interface. <i>Computer Applications in Engineering Education</i> , 1998 , 6, 151-155	1.6	3
	Advances in the Modeling and Control of Batch Crystallizers. <i>IFAC Postprint Volumes IPPV</i> /		

111	Integrated robust identification and control of large scale processes 1998,	3
110	On the Structure of the Robust Optimal Controller for a Class of Problems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1993 , 26, 133-136	3
109	Fast charging design for Lithium-ion batteries via Bayesian optimization. <i>Applied Energy</i> , 2022 , 307, 1182447	3
108	Offset-free Input-Output Formulations of Stochastic Model Predictive Control Based on Polynomial Chaos Theory 2019 ,	3
107	Stability Certificates for Neural Network Learning-based Controllers using Robust Control Theory 2021 ,	3
106	Regularized maximum likelihood estimation of sparse stochastic monomolecular biochemical reaction networks. <i>Computers and Chemical Engineering</i> , 2016 , 90, 111-120	2
105	Fast stochastic model predictive control of end-to-end continuous pharmaceutical manufacturing 1 1 Financial support from Novartis is acknowledged <i>Computer Aided Chemical Engineering</i> , 2018 , 353-378	2
104	Necessary and sufficient conditions for robust reliable control in the presence of model uncertainties and system component failures. <i>Computers and Chemical Engineering</i> , 2014 , 70, 67-77	2
103	Do You Have a Control Tool or a Control Toolbox? [From the Editor]. <i>IEEE Control Systems</i> , 2014 , 34, 6-7 2.9	2
102	Polynomial Chaos-Based H 2 -optimal Static Output Feedback Control of Systems with Probabilistic Parametric Uncertainties. <i>IFAC-PapersOnLine</i> , 2017 , 50, 3536-3541	2
101	Non-existence conditions of local bifurcations for rational systems with structured uncertainties 2014 ,	2
100	Probabilistic analysis and control of uncertain dynamic systems: Generalized polynomial chaos expansion approaches 2012 ,	2
99	Teaching Mathematics to Control Engineers [Focus on Education]. <i>IEEE Control Systems</i> , 2013 , 33, 66-67 2.9	2
98	Quality-by-design by using the skewed spherical structured singular value 2013 ,	2
97	Robust Static and Fixed-order Dynamic Output Feedback Control of Discrete-time Lur'e Systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 227-232	2
96	Structured spatial control of the reaction-diffusion equation with parametric uncertainties 2010,	2
95	Optimal spatial field control of distributed parameter systems 2009,	2
94	Concentration Control for Semi-batch pH-shift Reactive Crystallization of L-glutamic Acid. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 228-233	2

93	Chasing Impact Factors, or Making an Impact on Technology? [From the Editor]. <i>IEEE Control Systems</i> , 2012 , 32, 6-7	2.9	2
92	Global stability analysis for discrete-time nonlinear systems 1998,		2
91	RBF-based 2D optimal spatial control of the 3D reaction-convection-diffusion equation 2009,		2
90	On the Computation of Disturbance Rejection Measures. <i>IFAC Postprint Volumes IPPV /</i> International Federation of Automatic Control, 2000 , 33, 63-68		2
89	Robust batch control of crystallization processes 2000,		2
88	Mechanistic modeling and parameter-adaptive nonlinear model predictive control of a microbioreactor. <i>Computers and Chemical Engineering</i> , 2021 , 147, 107255	4	2
87	Fast Model Predictive Control for hydrogen outflow regulation in Ethanol Steam Reformers 2016,		2
86	Crystallization of a nonreplicating rotavirus vaccine candidate. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 1750-1756	4.9	2
85	Image inversion and uncertainty quantification for constitutive laws of pattern formation. <i>Journal of Computational Physics</i> , 2021 , 436, 110279	4.1	2
84	Nonlinear Identifiability Analysis of the Porous Electrode Theory Model of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021 , 168, 090546	3.9	2
83	Mathematical modeling and analysis of microwave-assisted freeze-drying in biopharmaceutical applications. <i>Computers and Chemical Engineering</i> , 2021 , 153, 107412	4	2
82	pH and conductivity control in an integrated biomanufacturing plant 2016,		1
81	Mixed Polynomial Chaos and Worst-Case Synthesis Approach to Robust Observer based Linear Quadratic Regulation 2018 ,		1
80	Writing Papers on Control Theory [Focus on Education]. IEEE Control Systems, 2014, 34, 75-75	2.9	1
79	Computational complexity and related topics of robustness margin calculation using Itheory: A review of theoretical developments. <i>Computers and Chemical Engineering</i> , 2014 , 70, 122-132	4	1
78	Perceptions of Science and Engineering [From the Editor]. IEEE Control Systems, 2014, 34, 6-7	2.9	1
77	On switched MPC of a class of switched linear systems with modal dwell time 2013,		1
76	2017,		1

75	Probabilistic robust parity relation for fault detection using polynomial chaos. <i>IFAC-PapersOnLine</i> , 2017 , 50, 1019-1024	0.7	1
74	Fast robust model predictive control of high-dimensional systems 2015,		1
73	Optimal Control of Li-Ion Batteries Based on Reformulated Models. ECS Meeting Abstracts, 2013,	Ο	1
72	Scilab Textbook Companions [Focus on Education]. <i>IEEE Control Systems</i> , 2014 , 34, 76-76	2.9	1
71	Analysis of a synthetic gene switching motif: Systems and control approaches. <i>Journal of Process Control</i> , 2014 , 24, 341-347	3.9	1
70	Feedback ? Control [From the Editor]. IEEE Control Systems, 2012, 32, 6-7	2.9	1
69	A characterization of solutions for general copositive quadratic Lyapunov inequalities 2013,		1
68	Inversion-based output regulation of chemotaxis using a constrained influx of chemical signaling molecules 2013 ,		1
67	The "Nobel Prize in engineering" awarded for the design of a feedback control system [From the Editor]. <i>IEEE Control Systems</i> , 2013 , 33, 6-7	2.9	1
66	Control Science or Control Engineering? [From the Editor]. IEEE Control Systems, 2013, 33, 6-7	2.9	1
65	Observer-based output feedback control of discrete-time Lur'e systems with sector-bounded slope-restricted nonlinearities 2011 ,		1
64	Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density 2012 ,		1
63	Discussion on: IPC Robust Design Using Linear and/or Bilinear Matrix Inequalities IEuropean Journal of Control, 2007, 13, 468-469	2.5	1
62	DISTRIBUTIONAL UNCERTAINTY ANALYSIS OF A BATCH CRYSTALLIZATION PROCESS USING POWER SERIES AND POLYNOMIAL CHAOS EXPANSIONS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2006 , 39, 655-660		1
61	Stability-oriented programs for regulating water withdrawals in riparian regions. <i>Water Resources Research</i> , 2004 , 40,	5.4	1
60	Perspectives on the Design and Control of Multiscale Systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 155-166		1
59	Identification of particle-particle interactions in suspension polymerization reactors		1
58	Linear and bilinear matrix inequalities in chemical process control 1999 ,		1

57	A reconciliation between quantitative feedback theory and robust multivariable control		1
56	Feedback Control of Dynamic Artificial Neural Networks Using Linear Matrix Inequalities 2020,		1
55	SCREENING PLANT DESIGNS AND CONTROL STRUCTURES FOR UNCERTAIN SYSTEMS 1994 , 227-232		1
54	Self-Optimizing Control of a Continuous-Flow Pharmaceutical Manufacturing Plant. <i>IFAC-PapersOnLine</i> , 2020 , 53, 11601-11606	0.7	1
53	Stochastic Dynamic Optimization and Model Predictive Control based on Polynomial Chaos Theory and Symbolic Arithmetic 2020 ,		1
52	Output Feedback Control and Observer Design for Dynamic Artificial Neural Networks 2021 ,		1
51	Model-based control for column-based continuous viral inactivation of biopharmaceuticals. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 3215-3224	4.9	1
50	Mathematical Modeling and Analysis of Carbon Nanotube Photovoltaic Systems**Support acknowledged from the U.S. Department of Energy and the National Science Foundation <i>IFAC-PapersOnLine</i> , 2016 , 49, 442-447	0.7	1
49	Maximization of ellipsoidal design space for continuous-time systems: A robust optimal control approach 2016 ,		1
48	Control systems analysis and design of multiscale simulation models 2016 ,		1
47	Model Predictive Control of Polynomial Systems. Control Engineering, 2019, 221-237	1	1
46	Meeting the challenge of water sustainability: The role of process systems engineering. <i>AICHE Journal</i> , 2021 , 67, e17113	3.6	1
45	An Information-Theoretic Framework for Fault Detection Evaluation and Design of Optimal Dimensionality Reduction Methods. <i>IFAC-PapersOnLine</i> , 2018 , 51, 1311-1316	0.7	1
44	A Systematic Approach to Process Data Analytics in Pharmaceutical Manufacturing 2018 , 295-312		1
43	Measuring the reversible heat of lithium-ion cells via current pulses for modeling of temperature dynamics. <i>Journal of Power Sources</i> , 2021 , 506, 230110	8.9	1
42	Multi-scale fluid dynamics simulation based on MP-PIC-PBE method for PMMA suspension polymerization. <i>Computers and Chemical Engineering</i> , 2021 , 152, 107391	4	1
41	A Polynomial Chaos Approach to Robust H_infinity Static Output-Feedback Control with Bounded Truncation Error. <i>IEEE Transactions on Automatic Control</i> , 2022 , 1-1	5.9	О
40	Compact neural network modeling of nonlinear dynamical systems via the standard nonlinear operator form. <i>Computers and Chemical Engineering</i> , 2022 , 159, 107674	4	O

39	Fast Stochastic Model Predictive Control of Unstable Dynamical Systems. <i>IFAC-PapersOnLine</i> , 2020 , 53, 7262-7267	0.7	0
38	Leveraging Neural Networks and Genetic Algorithms to Refine Electrode Properties in Redox Flow Batteries. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 050547	3.9	O
37	Methods P ETLION: Open-Source Software for Millisecond-Scale Porous Electrode Theory-Based Lithium-Ion Battery Simulations. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 090504	3.9	0
36	Polynomial chaos-based H2 output-feedback control of systems with probabilistic parametric uncertainties. <i>Automatica</i> , 2021 , 131, 109743	5.7	O
35	Tunable protein crystal size distribution via continuous slug-flow crystallization with spatially varying temperature. <i>CrystEngComm</i> , 2021 , 23, 6495-6505	3.3	O
34	Efficient Numerical Schemes for Population Balance Models. <i>Computers and Chemical Engineering</i> , 2022 , 107808	4	O
33	Optimal Structure Synthesis of Ternary Distillation Processes Using a Stepwise VLE Description. <i>Computer Aided Chemical Engineering</i> , 2017 , 40, 739-744	0.6	
32	Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 33-45	2.8	
31	Special issue in Honor of Manfred Morari's 60th Birthday. <i>Computers and Chemical Engineering</i> , 2014 , 70, 1-2	4	
30	Simon van der Meer's Nobel Prize in Control Engineering [From the Editor]. <i>IEEE Control Systems</i> , 2014 , 34, 6-6	2.9	
29	Control of Advanced Manufacturing Processes [From the Editor]. IEEE Control Systems, 2014, 34, 6-6	2.9	
28	The Rise and Fall of Popular Control Problems [From the Editor]. IEEE Control Systems, 2012, 32, 6-7	2.9	
27	Norbert Wiener, His Collaborators, and the Definition of the Wiener Number [Historical Perspectives]. <i>IEEE Control Systems</i> , 2013 , 33, 136-137	2.9	
26	The Pitfalls of Readily Available Solutions: Physically Consistent Global Analysis of Species Transport from a Spherical Particle [Focus on Education]. <i>IEEE Control Systems</i> , 2013 , 33, 54-56	2.9	
25	Role of Automatic Process Control in Quality by Design 2017 , 25-53		
24	Optimal spatial field control for controlled release. <i>Optimal Control Applications and Methods</i> , 2015 , 36, 968-984	1.7	
23	Speeding Up Matlab Programs by Orders of Magnitude [Focus on Education]. <i>IEEE Control Systems</i> , 2013 , 33, 135-163	2.9	
22	Maximum-Likelihood Parameter Estimation for Detecting Local Concentration from a Carbon Nanotube-based Sensor. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 166-171		

21	Estimation and Uncertainties [About This Issue]. <i>IEEE Control Systems</i> , 2013 , 33, 8-10	2.9
20	Uncertainties and nonlinearities [About This Issue]. IEEE Control Systems, 2013, 33, 8-9	2.9
19	The management of social networks [From the Editor]. IEEE Control Systems, 2013, 33, 6-7	2.9
18	A Call for High-Quality Perspectives Papers [From the Editor]. <i>IEEE Control Systems</i> , 2013 , 33, 6-6	2.9
17	Robust Anti-Windup Compensation for Normal Systems with Application to the Reaction-Diffusion Equation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 7316-7.	321
16	Control Engineering and the Birth of Aviation [From the Editor]. IEEE Control Systems, 2012, 32, 6-7	2.9
15	Discussion on: D esign of Cross-Directional Controllers with Optimal Steady State Performance <i>European Journal of Control</i> , 2004 , 10, 28-29	2.5
14	Nonlinear Feedback Control of a Coupled Kinetic Monte Carlo-Finite Difference Code. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 541-546	
13	Optimal Control of Transient Enhanced Diffusion. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2004 , 37, 547-552	
12	IDENTIFICATION OF PHARMACEUTICAL CRYSTALLIZATION PROCESSES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 253-258	
11	Screening plant designs and control structures for uncertain systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 1994 , 27, 227-232	
10	Nonlinearity Measures for Distributed Parameter and Descriptor Systems. <i>IFAC-PapersOnLine</i> , 2020 , 53, 7545-7550	0.7
9	Identification and Control of Polymerization Reactors 2007 , 3-41	
8	Droplet-Based Evaporative System for the Estimation of Protein Crystallization Kinetics. <i>Crystal Growth and Design</i> , 2021 , 21, 6064-6075	3.5
7	Control and Systems Theory for Advanced Manufacturing. <i>Lecture Notes in Control and Information Sciences - Proceedings</i> , 2018 , 63-79	0.2
6	State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection. <i>PLoS ONE</i> , 2015 , 10, e0141930	3.7
5	A Reduced-order Model for Real-time NMPC of Ethanol Steam Reformers. <i>IFAC-PapersOnLine</i> , 2021 , 54, 103-108	0.7
4	Robust Control Theory Based Stability Certificates for Neural Network Approximated Nonlinear Model Predictive Control. <i>IFAC-PapersOnLine</i> , 2021 , 54, 347-352	0.7

3 Modeling of copy number variability in Pichia pastoris. *Biotechnology and Bioengineering*, **2021**, 118, 1832:39839

2	Method of Characteristics for the Efficient Simulation of Population Balance Models. <i>Springer Optimization and Its Applications</i> , 2022 , 33-51	0.4
1	Fast Model Predictive Control of Modular Systems for Continuous Manufacturing of Pharmaceuticals. <i>Springer Optimization and Its Applications</i> , 2022 , 289-322	0.4