Nina-Naomi Kreis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9242250/publications.pdf Version: 2024-02-01

NINA-NAOMI KREIS

#	Article	IF	CITATIONS
1	Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in preeclampsia. BMC Medicine, 2022, 20, 35.	2.3	7
2	<i>BCL6</i> , a key oncogene, in the placenta, pre-eclampsia and endometriosis. Human Reproduction Update, 2022, 28, 890-909.	5.2	8
3	Functional Analysis of p21Cip1/CDKN1A and Its Family Members in Trophoblastic Cells of the Placenta and Its Roles in Preeclampsia. Cells, 2021, 10, 2214.	1.8	6
4	Mitotic Centromere-Associated Kinesin (MCAK/KIF2C) Regulates Cell Migration and Invasion by Modulating Microtubule Dynamics and Focal Adhesion Turnover. Cancers, 2021, 13, 5673.	1.7	20
5	Primary Cilia in Trophoblastic Cells. Hypertension, 2020, 76, 1491-1505.	1.3	24
6	The Function of Oncogene B-Cell Lymphoma 6 in the Regulation of the Migration and Invasion of Trophoblastic Cells. International Journal of Molecular Sciences, 2020, 21, 8393.	1.8	6
7	A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells, 2020, 9, 1777.	1.8	56
8	Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. International Journal of Molecular Sciences, 2020, 21, 5793.	1.8	101
9	Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Research and Therapy, 2019, 10, 255.	2.4	24
10	Function of p21 (Cip1/Waf1/CDKN1A) in Migration and Invasion of Cancer and Trophoblastic Cells. Cancers, 2019, 11, 989.	1.7	23
11	RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Molecular Oncology, 2019, 13, 2121-2141.	2.1	12
12	Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells, 2019, 8, 1288.	1.8	36
13	The Multifaceted p21 (Cip1/Waf1/CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers, 2019, 11, 1220.	1.7	166
14	Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene, 2019, 38, 4199-4214.	2.6	3
15	RITA Is Expressed in Trophoblastic Cells and Is Involved in Differentiation Processes of the Placenta. Cells, 2019, 8, 1484.	1.8	3
16	Insight into the development of obesity: functional alterations of adiposeâ€derived mesenchymal stem cells. Obesity Reviews, 2018, 19, 888-904.	3.1	103
17	Primary Cilia Are Dysfunctional in Obese Adipose-Derived Mesenchymal Stem Cells. Stem Cell Reports, 2018, 10, 583-599.	2.3	48
18	Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Radiotherapy and Oncology, 2018, 126, 214-221.	0.3	7

NINA-NAOMI KREIS

#	Article	IF	CITATIONS
19	Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene, 2017, 36, 2146-2159.	2.6	25
20	Involvement of the oncogene B-cell lymphoma 6 in the fusion and differentiation process of trophoblastic cells of the placenta. Oncotarget, 2017, 8, 108643-108654.	0.8	8
21	B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells. Cell Cycle, 2016, 15, 827-839.	1.3	36
22	Molecular insight into the regulation and function of MCAK. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 228-245.	2.3	36
23	Mitotic p21Cip1/CDKN1A is regulated by cyclin-dependent kinase 1 phosphorylation. Oncotarget, 2016, 7, 50215-50228.	0.8	32
24	Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget, 2016, 7, 84271-84285.	0.8	14
25	Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene, 2015, 34, 1758-1767.	2.6	90
26	Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget, 2015, 6, 6611-6626.	0.8	27
27	p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene, 2014, 33, 5716-5728.	2.6	42
28	Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle, 2013, 12, 1340-1351.	1.3	29
29	Function of Survivin in Trophoblastic Cells of the Placenta. PLoS ONE, 2013, 8, e73337.	1.1	32
30	Âp53 is not directly relevant to the response of Polo-like kinase 1 inhibitors. Cell Cycle, 2012, 11, 543-553.	1.3	33
31	Polo-Box Domain Inhibitor Poloxin Activates the Spindle Assembly Checkpoint and Inhibits Tumor Growth in Vivo. American Journal of Pathology, 2011, 179, 2091-2099.	1.9	78
32	Functional and Spatial Regulation of Mitotic Centromere- Associated Kinesin by Cyclin-Dependent Kinase 1. Molecular and Cellular Biology, 2010, 30, 2594-2607.	1.1	51
33	Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21 ^{WAF1/CIP1} . Cell Cycle, 2009, 8, 460-472.	1.3	54