
## Jeroen J Briaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9241698/publications.pdf Version: 2024-02-01



IEDOEN I RDIAIDE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and<br>Radiologic Studies of the Human Cochlea. Otology and Neurotology, 2010, 31, 722-730.                                                      | 1.3 | 186       |
| 2  | The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multichannel<br>Cochlear Implants. Otology and Neurotology, 2001, 22, 340-349.                                                                             | 1.3 | 136       |
| 3  | Initial Evaluation of the Clarion CII Cochlear Implant: Speech Perception and Neural Response Imaging.<br>Ear and Hearing, 2002, 23, 184-197.                                                                                           | 2.1 | 105       |
| 4  | Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hearing Research, 2000, 148, 18-30.                                                                                                                 | 2.0 | 98        |
| 5  | Pitch Comparisons between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli<br>Presented to a Normal-hearing Contralateral Ear. JARO - Journal of the Association for Research in<br>Otolaryngology, 2010, 11, 625-640. | 1.8 | 97        |
| 6  | Behavioral problems in school-aged hearing-impaired children: the influence of sociodemographic,<br>linguistic, and medical factors. European Child and Adolescent Psychiatry, 2014, 23, 187-196.                                       | 4.7 | 93        |
| 7  | Unraveling the electrically evoked compound action potential. Hearing Research, 2005, 205, 143-156.                                                                                                                                     | 2.0 | 91        |
| 8  | The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: A model approach. Hearing Research, 2006, 214, 17-27.                                                                             | 2.0 | 90        |
| 9  | Cochlear Implant Programming: A Global Survey on the State of the Art. Scientific World Journal, The, 2014, 2014, 1-12.                                                                                                                 | 2.1 | 88        |
| 10 | Psychopathology and Its Risk and Protective Factors in Hearing-Impaired Children and Adolescents.<br>JAMA Pediatrics, 2014, 168, 170.                                                                                                   | 6.2 | 86        |
| 11 | Cochlear Implant Outcomes and Quality of Life in Adults with Prelingual Deafness. Laryngoscope, 2007, 117, 1982-1987.                                                                                                                   | 2.0 | 77        |
| 12 | Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hearing Research, 2014, 315, 10-24.                                                                                            | 2.0 | 76        |
| 13 | Anatomic Considerations of Cochlear Morphology and Its Implications for Insertion Trauma in Cochlear Implant Surgery. Otology and Neurotology, 2009, 30, 471-477.                                                                       | 1.3 | 75        |
| 14 | Current focussing in cochlear implants: An analysis of neural recruitment in a computational model.<br>Hearing Research, 2015, 322, 89-98.                                                                                              | 2.0 | 72        |
| 15 | Depression in hearing-impaired children. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 1313-1317.                                                                                                                   | 1.0 | 71        |
| 16 | Low Empathy in Deaf and Hard of Hearing (Pre)Adolescents Compared to Normal Hearing Controls.<br>PLoS ONE, 2015, 10, e0124102.                                                                                                          | 2.5 | 60        |
| 17 | Self-Esteem in Hearing-Impaired Children: The Influence of Communication, Education, and Audiological Characteristics. PLoS ONE, 2014, 9, e94521.                                                                                       | 2.5 | 57        |
| 18 | Diversity in Cochlear Morphology and Its Influence on Cochlear Implant Electrode Position. Ear and<br>Hearing, 2014, 35, e9-e20.                                                                                                        | 2.1 | 54        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Influence of Cochlear Implant Electrode Position on Performance. Audiology and Neuro-Otology, 2015, 20, 202-211.                                                            | 1.3 | 51        |
| 20 | Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Oto-Laryngologica, 2009, 129, 433-439.     | 0.9 | 49        |
| 21 | Optimizing the Number of Electrodes with High-rate Stimulation of the Clarion CII Cochlear Implant.<br>Acta Oto-Laryngologica, 2003, 123, 138-142.                              | 0.9 | 48        |
| 22 | Comparison of Bilateral and Unilateral Cochlear Implantation in Adults. JAMA Otolaryngology - Head and Neck Surgery, 2016, 142, 249.                                            | 2.2 | 48        |
| 23 | Stimulation of the Facial Nerve by Intracochlear Electrodes in Otosclerosis. Otology and Neurotology, 2009, 30, 1168-1174.                                                      | 1.3 | 44        |
| 24 | Evaluation of Voice Quality in Adductor Spasmodic Dysphonia before and after Botulinum Toxin<br>Treatment. Annals of Otology, Rhinology and Laryngology, 2001, 110, 627-634.    | 1.1 | 43        |
| 25 | Clinical Evaluation of the Clarion CII HiFocus 1 with and Without Positioner. Ear and Hearing, 2005, 26, 577-592.                                                               | 2.1 | 42        |
| 26 | Missing Data in the Field of Otorhinolaryngology and Head & Neck Surgery: Need for Improvement. Ear and Hearing, 2017, 38, 1-6.                                                 | 2.1 | 42        |
| 27 | Anxiety in children with hearing aids or cochlear implants compared to normally hearing controls.<br>Laryngoscope, 2012, 122, 654-659.                                          | 2.0 | 39        |
| 28 | Use of Electrically Evoked Compound Action Potentials for Cochlear Implant Fitting: A Systematic<br>Review. Ear and Hearing, 2018, 39, 401-411.                                 | 2.1 | 37        |
| 29 | A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements. Acta Oto-Laryngologica, 2004, 124, 137-143.                  | 0.9 | 36        |
| 30 | Cochlear Coordinates in Regard to Cochlear Implantation. Otology and Neurotology, 2010, 31, 738-744.                                                                            | 1.3 | 34        |
| 31 | Spread of Excitation and Channel Interaction in Single- and Dual-Electrode Cochlear Implant Stimulation. Ear and Hearing, 2012, 33, 367-376.                                    | 2.1 | 32        |
| 32 | Electrode Migration in Cochlear Implant Patients: Not an Exception. Audiology and Neuro-Otology,<br>2012, 17, 275-281.                                                          | 1.3 | 32        |
| 33 | Speech Intelligibility as a Predictor of Cochlear Implant Outcome in Prelingually Deafened Adults. Ear and Hearing, 2011, 32, 445-458.                                          | 2.1 | 29        |
| 34 | Symptoms of Psychopathology in Hearing-Impaired Children. Ear and Hearing, 2015, 36, e190-e198.                                                                                 | 2.1 | 29        |
| 35 | Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials. International Journal of Audiology, 2012, 51, 465-474. | 1.7 | 28        |
| 36 | Threshold Levels of Dual Electrode Stimulation in Cochlear Implants. JARO - Journal of the<br>Association for Research in Otolaryngology, 2013, 14, 781-790.                    | 1.8 | 28        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Visualization of Human Inner Ear Anatomy with High-Resolution MR Imaging at 7T: Initial Clinical<br>Assessment. American Journal of Neuroradiology, 2015, 36, 378-383.                                     | 2.4 | 27        |
| 38 | Stimulus level effects on neural excitation and eCAP amplitude. Hearing Research, 2011, 280, 166-176.                                                                                                      | 2.0 | 26        |
| 39 | Integrated use of volume conduction and neural models to simulate the response to cochlear implants. Simulation Modelling Practice and Theory, 2000, 8, 75-97.                                             | 0.3 | 25        |
| 40 | Neural excitation patterns induced by phased-array stimulation in the implanted human cochlea. Acta<br>Oto-Laryngologica, 2011, 131, 362-370.                                                              | 0.9 | 25        |
| 41 | Comparison of the HiFocus Mid-Scala and HiFocus 1J Electrode Array: Angular Insertion Depths and Speech Perception Outcomes. Audiology and Neuro-Otology, 2016, 21, 316-325.                               | 1.3 | 25        |
| 42 | Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature. Network: Computation in Neural Systems, 2016, 27, 107-134. | 3.6 | 25        |
| 43 | Factors Influencing Speech Perception in Adults With a Cochlear Implant. Ear and Hearing, 2021, 42, 949-960.                                                                                               | 2.1 | 25        |
| 44 | Thin Titanium Nitride Films Deposited using DC Magnetron Sputtering used for Neural Stimulation and Sensing Purposes. Procedia Engineering, 2012, 47, 726-729.                                             | 1.2 | 24        |
| 45 | 3D mesh generation to solve the electrical volume conduction problem in the implanted inner ear.<br>Simulation Modelling Practice and Theory, 2000, 8, 57-73.                                              | 0.3 | 23        |
| 46 | Evidence-Based Inclusion Criteria for Cochlear Implantation in Patients With Postlingual Deafness.<br>Ear and Hearing, 2018, 39, 1008-1014.                                                                | 2.1 | 23        |
| 47 | Effects of Pulse Width, Pulse Rate and Paired Electrode Stimulation on Psychophysical Measures of<br>Dynamic Range and Speech Recognition in Cochlear Implants. Ear and Hearing, 2012, 33, 489-496.        | 2.1 | 21        |
| 48 | Objective and Subjective Measures of Simultaneous vs Sequential Bilateral Cochlear Implants in<br>Adults. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 881.                                     | 2.2 | 21        |
| 49 | Psychophysical Assessment of Spatial Spread of Excitation in Electrical Hearing with Single and Dual Electrode Contact Maskers. Ear and Hearing, 2006, 27, 645-657.                                        | 2.1 | 20        |
| 50 | Intracochlear Position of Cochlear Implants Determined Using CT Scanning versus Fitting Levels:<br>Higher Threshold Levels at Basal Turn. Audiology and Neuro-Otology, 2016, 21, 54-67.                    | 1.3 | 20        |
| 51 | Prosody perception and production by children with cochlear implants. Journal of Child Language, 2019, 46, 111-141.                                                                                        | 1.2 | 20        |
| 52 | Detection of Translocation of Cochlear Implant Electrode Arrays by Intracochlear Impedance<br>Measurements. Ear and Hearing, 2021, 42, 1397-1404.                                                          | 2.1 | 20        |
| 53 | Benefit of contralateral routing of signals for unilateral cochlear implant users. Journal of the<br>Acoustical Society of America, 2016, 140, 393-401.                                                    | 1.1 | 19        |
| 54 | Can You Hear What I Think? Theory of Mind in Young Children With Moderate Hearing Loss. Ear and<br>Hearing, 2017, 38, 588-597.                                                                             | 2.1 | 19        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Variations in cochlear duct shape revealed on clinical CT images with an automatic tracing method.<br>Scientific Reports, 2017, 7, 17566.                                                          | 3.3 | 19        |
| 56 | Speech recognition with a cochlear implant using triphasic charge-balanced pulses. Acta<br>Oto-Laryngologica, 2004, 124, 371-375.                                                                  | 0.9 | 18        |
| 57 | Cochlear reimplantation with same device: Surgical and audiologic results. Laryngoscope, 2011, 121, 1517-1524.                                                                                     | 2.0 | 18        |
| 58 | Pediatric Auditory Brainstem Implant Users Compared With Cochlear Implant Users With Additional Disabilities. Otology and Neurotology, 2019, 40, 936-945.                                          | 1.3 | 18        |
| 59 | Intelligibility of the Patient's Speech Predicts the Likelihood of Cochlear Implant Success in<br>Prelingually Deaf Adults. Ear and Hearing, 2016, 37, e302-e310.                                  | 2.1 | 17        |
| 60 | A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution. Ear and Hearing, 2016, 37, 572-581.                                                                                       | 2.1 | 17        |
| 61 | Population-Based Prediction of Fitting Levels for Individual Cochlear Implant Recipients. Audiology and Neuro-Otology, 2015, 20, 1-16.                                                             | 1.3 | 15        |
| 62 | Selection Criteria for Cochlear Implantation in the United Kingdom and Flanders: Toward a Less<br>Restrictive Standard. Ear and Hearing, 2021, 42, 68-75.                                          | 2.1 | 15        |
| 63 | A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.<br>Hearing Research, 2016, 341, 130-143.                                                       | 2.0 | 14        |
| 64 | Cost-benefit Analysis of Cochlear Implants: A Societal Perspective. Ear and Hearing, 2021, 42, 1338-1350.                                                                                          | 2.1 | 13        |
| 65 | Development of Insertion Models Predicting Cochlear Implant Electrode Position. Ear and Hearing, 2016, 37, 473-482.                                                                                | 2.1 | 12        |
| 66 | The Precision of eCAP Thresholds Derived From Amplitude Growth Functions. Ear and Hearing, 2018, 39, 701-711.                                                                                      | 2.1 | 12        |
| 67 | Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants. Ear and Hearing, 2019, 40, 34-44.                                                                              | 2.1 | 12        |
| 68 | Dynamic current focusing for loudness encoding in cochlear implants: a take-home trial.<br>International Journal of Audiology, 2019, 58, 553-564.                                                  | 1.7 | 12        |
| 69 | The School Career of Children With Hearing Loss in Different Primary Educational Settings—A Large<br>Longitudinal Nationwide Study. Journal of Deaf Studies and Deaf Education, 2021, 26, 405-416. | 1.2 | 12        |
| 70 | The relation between polarity sensitivity and neural degeneration in a computational model of cochlear implant stimulation. Hearing Research, 2022, 415, 108413.                                   | 2.0 | 12        |
| 71 | The impact of internodal segmentation in biophysical nerve fiber models. Journal of Computational Neuroscience, 2014, 37, 307-315.                                                                 | 1.0 | 11        |
| 72 | Unravelling the temporal properties of human eCAPs through an iterative deconvolution model.<br>Hearing Research, 2020, 395, 108037.                                                               | 2.0 | 11        |

Jeroen J Briaire

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Learning Effects in Psychophysical Tests of Spectral and Temporal Resolution. Ear and Hearing, 2018, 39, 475-481.                                                                                            | 2.1 | 10        |
| 74 | Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation. Hearing Research, 2017, 351, 19-33.                                                                                    | 2.0 | 9         |
| 75 | Design and fabrication of stiff silicon probes: A step towards sophisticated cochlear implant electrodes. Procedia Engineering, 2011, 25, 1012-1015.                                                         | 1.2 | 8         |
| 76 | Influence of Widening Electrode Separation on Current Steering Performance. Ear and Hearing, 2011, 32, 221-229.                                                                                              | 2.1 | 8         |
| 77 | Comparison of Multipole Stimulus Configurations With Respect to Loudness and Spread of Excitation. Ear and Hearing, 2017, 38, 487-496.                                                                       | 2.1 | 8         |
| 78 | Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study. Hearing Research, 2019, 377, 167-178.                                                                                      | 2.0 | 7         |
| 79 | Channel discrimination along all contacts of the cochlear implant electrode array and its relation to speech perception. International Journal of Audiology, 2019, 58, 262-268.                              | 1.7 | 7         |
| 80 | Test/Retest Variability of the eCAP Threshold in Advanced Bionics Cochlear Implant Users. Ear and Hearing, 2019, 40, 1457-1466.                                                                              | 2.1 | 7         |
| 81 | The Temporal Fine Structure of Background Noise Determines the Benefit of Bimodal Hearing for<br>Recognizing Speech. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21,<br>527-544. | 1.8 | 7         |
| 82 | Effectiveness of Phantom Stimulation in Shifting the Pitch Percept in Cochlear Implant Users. Ear and<br>Hearing, 2020, 41, 1258-1269.                                                                       | 2.1 | 5         |
| 83 | SoftVoice Improves Speech Recognition and Reduces Listening Effort in Cochlear Implant Users. Ear and Hearing, 2021, 42, 381-392.                                                                            | 2.1 | 5         |
| 84 | Prolonged Insertion Time Reduces Translocation Rate of a Precurved Electrode Array in Cochlear<br>Implantation. Otology and Neurotology, 2022, 43, e427-e434.                                                | 1.3 | 5         |
| 85 | An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique. Hearing Research, 2009, 253, 3-14.                                          | 2.0 | 4         |
| 86 | Silicon Probes for Cochlear Auditory Nerve Stimulation and Measurement. Advanced Materials<br>Research, 0, 254, 82-85.                                                                                       | 0.3 | 4         |
| 87 | Survey of Cochlear Implant User Satisfaction with the Neptuneâ,,¢ Waterproof Sound Processor.<br>Audiology Research, 2016, 6, 6-10.                                                                          | 1.8 | 4         |
| 88 | Simulating intracochlear electrocochleography with a combined model of acoustic hearing and electric current spread in the cochlea. Journal of the Acoustical Society of America, 2020, 147, 2049-2060.      | 1.1 | 4         |
| 89 | An iterative deconvolution model to extract the temporal firing properties of the auditory nerve fibers in human eCAPs. MethodsX, 2021, 8, 101240.                                                           | 1.6 | 4         |
| 90 | Basic Measures of Prosody in Spontaneous Speech of Children With Early and Late Cochlear<br>Implantation. Journal of Speech, Language, and Hearing Research, 2018, 61, 3075-3094.                            | 1.6 | 4         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Restoring speech perception with cochlear implants by spanning defective electrode contacts. Acta<br>Oto-Laryngologica, 2013, 133, 394-399.                                                            | 0.9 | 3         |
| 92  | Multicentre Evaluation of the NaÃda CI Q70 Sound Processor: Feedback from Cochlear Implant Users<br>and Professionals. Audiology Research, 2016, 6, 160.                                               | 1.8 | 3         |
| 93  | The perception of emotion and focus prosody with varying acoustic cues in cochlear implant simulations with varying filter slopes. Journal of the Acoustical Society of America, 2017, 141, 3349-3363. | 1.1 | 3         |
| 94  | Reducing interaction in simultaneous paired stimulation with CI. PLoS ONE, 2017, 12, e0171071.                                                                                                         | 2.5 | 3         |
| 95  | The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants. Hearing Research, 2022, 420, 108490.                                                        | 2.0 | 3         |
| 96  | Concept and initial testing of a new, basally perimodiolar electrode design. International Congress<br>Series, 2004, 1273, 105-108.                                                                    | 0.2 | 2         |
| 97  | Take-Home Trial Comparing Fast Fourier Transformation-Based and Filter Bank-Based Cochlear Implant<br>Speech Coding Strategies. BioMed Research International, 2017, 2017, 1-7.                        | 1.9 | 2         |
| 98  | Personalizing Transient Noise Reduction Algorithm Settings for Cochlear Implant Users. Ear and Hearing, 2021, Publish Ahead of Print, 1602-1614.                                                       | 2.1 | 2         |
| 99  | Saccades Matter: Reduced Need for Caloric Testing of Cochlear Implant Candidates by Joint Analysis of v-HIT Gain and Corrective Saccades. Frontiers in Neurology, 2021, 12, 676812.                    | 2.4 | 1         |
| 100 | Auditory Prosthesis. , 2014, , 1-6.                                                                                                                                                                    |     | 1         |
| 101 | Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 2022, 420, 108522.                                                                            | 2.0 | 1         |
| 102 | Residual Hearing Affects Contralateral Routing of Signals in Cochlear Implant Users. Audiology and Neuro-Otology, 2021, , 1-8.                                                                         | 1.3 | 0         |
| 103 | Saccades matter: Reduced need for caloric testing of cochlear implant candidates by joint analysis of v-HIT gain and corrective saccades. Journal of the Neurological Sciences, 2021, 429, 118506.     | 0.6 | 0         |
|     |                                                                                                                                                                                                        |     |           |

104 Auditory Prosthesis. , 2022, , 310-314.

0