
Jia Jie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9241554/publications.pdf Version: 2024-02-01

LIA LIE MANC

#	Article	IF	CITATIONS
1	Polarization-sensitive photonic jet of a dielectric sphere excited by a zero-order Bessel beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 280, 108093.	2.3	6
2	Towards photophoresis with the generalized Lorenz-Mie theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 288, 108266.	2.3	3
3	Finite series algorithm design for lens-focused Laguerre–Gauss beams in the generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 261, 107488.	2.3	12
4	Theoretical prediction of photophoretic force on a dielectric sphere illuminated by a circularly symmetric high-order Bessel beam: on-axis case. Optics Express, 2021, 29, 26894.	3.4	13
5	Poynting vector and beam shape coefficients: On new families of symmetries (non-dark axisymmetric) Tj ETQq1 1 Radiative Transfer, 2021, 271, 107745.	0.784314 2.3	rgBT /Ove 5
6	Efficient computation of arbitrary beam scattering on a sphere: Comments and rebuttal, with a review on the angular spectrum decomposition. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276, 107913.	2.3	16
7	Explicit analytical expressions for the electromagnetic field components of typical structured light beams. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241, 106715.	2.3	12
8	Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256, 107292.	2.3	23
9	Photonic jet generated by a dielectric spheroid with Bessel beam excitation. , 2020, , .		2
10	Characteristics of photonic jets generated by a dielectric sphere illuminated by a Gaussian beam. Applied Optics, 2020, 59, 6390.	1.8	13
11	Optical trapping forces on Rayleigh particles by a focused Bessel-Gaussian correlated Schell-model beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 309-316.	2.3	11
12	Rainbow pattern analysis of a multilayered sphere for optical diagnostic of a heating droplet. Optics Communications, 2019, 441, 113-120.	2.1	6
13	Geometrical optics approximation for forward light scattering by a large chiral sphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228, 90-96.	2.3	4
14	Generation of an arbitrary order Bessel beam in FDTD for time domain calculation. , 2019, , .		1
15	Internal field distribution of a radially inhomogeneous droplet illuminated by an arbitrary shaped beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210, 19-34.	2.3	7
16	Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 22-30.	2.3	11
17	Computation of Bessel Beams in the FDTD Method. , 2018, , .		0
18	Backward Scattering Characteristics of a Reentry Vehicle Enveloped by a Hypersonic Flow Field. International Journal of Antennas and Propagation, 2018, 2018, 1-14.	1.2	5

JIA JIE WANG

#	Article	IF	CITATIONS
19	Analysis of electromagnetic scattering characteristics of plasma sheath surrounding a hypersonic aerocraft based on high-order auxiliary differential equation finite-difference time-domain. Physics of Plasmas, 2018, 25, .	1.9	12
20	Intensity, phase, and polarization of a vector Bessel vortex beam through multilayered isotropic media. Applied Optics, 2018, 57, 1967.	1.8	14
21	Assessing the validity of the localized approximation for discrete superpositions of Bessel beams. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2690.	2.1	32
22	Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles. Optics Express, 2018, 26, 26766.	3.4	10
23	Generation of Bessel beam sources in FDTD. Optics Express, 2018, 26, 28727.	3.4	10
24	Scattering of aggregated particles illuminated by a zeroth-order Bessel beam. Optics Communications, 2017, 391, 42-47.	2.1	5
25	Multipole expansion of circularly symmetric Bessel beams of arbitrary order for scattering calculations. Optics Communications, 2017, 387, 102-109.	2.1	69
26	General description of transverse mode Bessel beams and construction of basis Bessel fields. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 195, 8-17.	2.3	41
27	On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces. Applied Optics, 2017, 56, 5377.	2.1	35
28	Tensor ABCD law for misaligned inline particle holography of inclusions in a host droplet. Applied Optics, 2017, 56, 1526.	2.1	2
29	Light Wave Propagation and Scattering Through Particles. , 2017, , .		0
30	General description of circularly symmetric Bessel beams of arbitrary order. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 218-232.	2.3	68
31	Shaped beam scattering by an aggregate of particles using generalized Lorenz–Mie theory. Optics Communications, 2016, 365, 186-193.	2.1	19
32	Electromagnetic scattering of an aggregate of particles illuminated by an arbitrary shaped beam. Proceedings of SPIE, 2015, , .	0.8	1
33	Light scattering from an optically anisotropic particle illuminated by an arbitrary shaped beam. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 135-144.	2.3	20
34	T-matrix method for electromagnetic scattering by a general anisotropic particle. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 162, 66-76.	2.3	17
35	Controllable and enhanced photonic jet generated by fiber combined with spheroid. Optics Letters, 2014, 39, 1585.	3.3	11
36	Photonic jet generated by spheroidal particle with Gaussian-beam illumination. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1476.	2.1	48

JIA JIE WANG

#	Article	IF	CITATIONS
37	Electromagnetic scattering from gyroelectric anisotropic particle by the T-matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 135, 20-29.	2.3	14
38	Shaped beam scattering from a single lymphocyte cell by generalized Lorenz–Mie theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 72-80.	2.3	10
39	Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1946.	1.5	25
40	Vectorial analytical description of the polarized light of a high-power laser diode. Applied Optics, 2013, 52, 1711.	1.8	1
41	Note on the use of localized beam models for light scattering theories in spherical coordinates. Applied Optics, 2012, 51, 3832.	1.8	35
42	Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets. Experiments in Fluids, 2011, 51, 149-159.	2.4	21