
Krzysztof Kubiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9241053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Turbine Housing Failure Due to Sigma Phase Precipitation and Embrittlement of Niobium-Stabilized Austenitic Steel Casting. Journal of Materials Engineering and Performance, 2020, 29, 1535-1543.	2.5	4
2	Application of Inner Radiation Baffles in the Bridgman Process for Flattening the Temperature Profile and Controlling the Columnar Grain Structure of Directionally Solidified Ni-Based Superalloys. Materials, 2019, 12, 935.	2.9	11
3	The assessment of geometric accuracy of aircraft engine blades with the use of an optical coordinate scanner. Aircraft Engineering and Aerospace Technology, 2016, 88, 374-381.	0.8	13
4	The Cyclic Carburization Process by Bi-velocity Method. High Temperature Materials and Processes, 2015, 34, .	1.4	2
5	The Unidirectional Crystallization of Metals and Alloys (Turbine Blades). , 2015, , 413-457.		8
6	Rapid prototyping in manufacturing of core models of aircraft engine blades. Aircraft Engineering and Aerospace Technology, 2014, 86, 323-327.	0.8	28
7	The subgrain structure in turbine blade roots of CMSX-4 superalloy. Journal of Crystal Growth, 2014, 401, 418-422.	1.5	44
8	Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components. Materials, 2013, 6, 5016-5037.	2.9	49
9	X-Ray Topography Study of the Nickel Superalloy CMSX-4 Single Crystals. Solid State Phenomena, 2010, 163, 260-263.	0.3	8
10	Characterization of Single-Crystal Dendrite Structure and Porosity in Nickel-Based Superalloys Using X-Ray Micro-Computed Tomography. Advanced Materials Research, 0, 278, 66-71.	0.3	9
11	Correlation between SEM and X-Ray Diffraction Imaging of Defect Structure in Single-Crystal Ni-Based Superalloy. Solid State Phenomena, 0, 186, 135-138.	0.3	12
12	Modelling of Grain Microstructure of IN-713C Castings. Solid State Phenomena, 0, 197, 83-88.	0.3	12
13	Porosity of Solid and Cored Turbine Blades of Aircraft Engines. Solid State Phenomena, 0, 226, 115-118.	0.3	0
14	Influence of Process Parameters on Cooling Conditions in Nickel Base Superalloy Investment Casting. Key Engineering Materials, 0, 641, 124-131.	0.4	4
15	The Technology of TBC Deposition by EB-PVD Method. Solid State Phenomena, 0, 227, 377-380.	0.3	3
16	The Influence of Ar/N ₂ Plasma Gases on Microstructure of Ceramic Coatings Produced by PS-PVD Method. Materials Science Forum, 0, 844, 187-192.	0.3	2