
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9240796/publications.pdf Version: 2024-02-01

FUE KAMSEU

#	Article	IF	CITATIONS
1	Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construction and Building Materials, 2016, 114, 276-289.	7.2	202
2	Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. Journal of the European Ceramic Society, 2012, 32, 1593-1603.	5.7	153
3	Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management, 2010, 30, 673-679.	7.4	136
4	Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. Journal of Cleaner Production, 2017, 142, 3050-3060.	9.3	131
5	Mix-design and characterization of alkali activated materials based on metakaolin and ladle slag. Applied Clay Science, 2013, 73, 78-85.	5.2	105
6	Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements. Applied Clay Science, 2017, 147, 184-194.	5.2	100
7	The corrosion of kaolinite by iron minerals and the effects on geopolymerization. Applied Clay Science, 2017, 138, 48-62.	5.2	98
8	Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. Journal of Materials Science, 2010, 45, 1715-1724.	3.7	97
9	Effect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceramics International, 2018, 44, 21442-21450.	4.8	97
10	Characterisation of porcelain compositions using two china clays from Cameroon. Ceramics International, 2007, 33, 851-857.	4.8	95
11	Microstructure and engineering properties of Fe2O3(FeO)-Al2O3-SiO2 based geopolymer composites. Journal of Cleaner Production, 2018, 199, 849-859.	9.3	80
12	Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 2015, 88, 45-56.	6.7	72
13	Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chemie Der Erde, 2017, 77, 257-266.	2.0	71
14	Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass and sodium waterglass from rice husk ash. Journal of Sol-Gel Science and Technology, 2016, 78, 492-506.	2.4	68
15	Thermal Behavior of Metakaolin-Based Geopolymer Cements Using Sodium Waterglass from Rice Husk Ash and Waste Glass as Alternative Activators. Waste and Biomass Valorization, 2017, 8, 573-584.	3.4	67
16	A Sustainable Approach for the Geopolymerization of Natural Iron-Rich Aluminosilicate Materials. Sustainability, 2014, 6, 5535-5553.	3.2	65
17	Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Materials Chemistry and Physics, 2020, 240, 122062.	4.0	60
18	Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Construction and Building Materials, 2014, 65, 60-66.	7.2	58

#	Article	IF	CITATIONS
19	Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cement and Concrete Research, 2021, 140, 106320.	11.0	58
20	Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements. Journal of Asian Ceramic Societies, 2018, 6, 271-283.	2.3	57
21	Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. Journal of Thermal Analysis and Calorimetry, 2012, 108, 1189-1199.	3.6	56
22	Metakaolin-based inorganic polymer composite: Effects of fine aggregate composition and structure on porosity evolution, microstructure and mechanical properties. Cement and Concrete Composites, 2014, 53, 258-269.	10.7	56
23	The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements. Materials Chemistry and Physics, 2017, 199, 280-288.	4.0	56
24	Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Construction and Building Materials, 2016, 104, 293-297.	7.2	54
25	Meta-halloysite to improve compactness in iron-rich laterite-based alkali activated materials. Materials Chemistry and Physics, 2020, 239, 122268.	4.0	53
26	Determination of thermal shock resistance in refractory materials by ultrasonic pulse velocity measurement. Journal of the European Ceramic Society, 2007, 27, 1859-1863.	5.7	51
27	Microstructural and mechanical properties of poly(sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: A comparative study. Applied Clay Science, 2020, 186, 105448.	5.2	51
28	Laterite Based Stabilized Products for Sustainable Building Applications in Tropical Countries: Review and Prospects for the Case of Cameroon. Sustainability, 2011, 3, 293-305.	3.2	49
29	Design of inorganic polymer cements: Effects of matrix strengthening on microstructure. Construction and Building Materials, 2013, 38, 1135-1145.	7.2	49
30	Synthesis and properties of inorganic polymers (geopolymers) derived from Cameroon-meta-halloysite. Ceramics International, 2018, 44, 18499-18508.	4.8	48
31	Characterization and performance evaluation of laterite based geopolymer binder cured at different temperatures. Construction and Building Materials, 2021, 270, 121443.	7.2	48
32	Room-temperature alkaline activation of feldspathic solid solutions: Development of high strength geopolymers. Construction and Building Materials, 2019, 195, 258-268.	7.2	47
33	Volcanic ash as alternative raw materials for traditional vitrified ceramic products. Advances in Applied Ceramics, 2007, 106, 135-141.	1.1	46
34	Reaction kinetics and rheological behaviour of meta-halloysite based geopolymer cured at room temperature: Effect of thermal activation on physicochemical and microstructural properties. Applied Clay Science, 2020, 196, 105773.	5.2	45
35	Cleaner production of the lightweight insulating composites: Microstructure, pore network and thermal conductivity. Energy and Buildings, 2015, 107, 113-122.	6.7	40
36	Recycled natural wastes in metakaolin based porous geopolymers for insulating applications. Journal of Building Engineering, 2015, 3, 58-69.	3.4	38

#	Article	IF	CITATIONS
37	Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite. SN Applied Sciences, 2019, 1, 1.	2.9	38
38	Effect of slag and calcium carbonate addition on the development of geopolymer from indurated laterite. Applied Clay Science, 2017, 148, 109-117.	5.2	36
39	Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Applied Clay Science, 2020, 198, 105813.	5.2	35
40	Advancing the Use of Secondary Inputs in Geopolymer Binders for Sustainable Cementitious Composites: A Review. Sustainability, 2011, 3, 410-423.	3.2	33
41	Design of low cost semi-crystalline calcium silicate from biomass for the improvement of the mechanical and microstructural properties of metakaolin-based geopolymer cements. Materials Chemistry and Physics, 2019, 223, 98-108.	4.0	33
42	Thermal behaviour of metakaolin–bauxite blends geopolymer: microstructure and mechanical properties. SN Applied Sciences, 2020, 2, 1.	2.9	33
43	Improving hydraulic properties of lime–rice husk ash (RHA) binders with metakaolin (MK). Construction and Building Materials, 2011, 25, 2157-2161.	7.2	32
44	Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA). Materialia, 2021, 16, 101083.	2.7	30
45	Development of alkali-activated composites from calcined iron-rich laterite soil. Materialia, 2021, 15, 101032.	2.7	28
46	Lateritic soils based geopolymer materials: A review. Construction and Building Materials, 2022, 344, 128157.	7.2	28
47	The effects of synthesized calcium phosphate compounds on the mechanical and microstructural properties of metakaolin-based geopolymer cements. Construction and Building Materials, 2018, 163, 776-792.	7.2	27
48	Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: Mechanical properties and durability. Journal of Building Engineering, 2021, 34, 101935.	3.4	26
49	Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8311-8318.	5.6	25
50	Mechanical and microstructural properties of geopolymer mortars from meta-halloysite: effect of titanium dioxide TiO2 (anatase and rutile) content. SN Applied Sciences, 2020, 2, 1.	2.9	25
51	Innovative porous ceramic matrices from inorganic polymer composites (IPCs): Microstructure and mechanical properties. Construction and Building Materials, 2021, 273, 122032.	7.2	25
52	Powdered banana peel in calcined halloysite replacement on the setting times and engineering properties on the geopolymer binders. Construction and Building Materials, 2021, 279, 122480.	7.2	24
53	Effect of silica and lignocellulosic additives on the formation and the distribution of meso and macropores in foam metakaolin-based geopolymer filters for dyes and wastewater filtration. SN Applied Sciences, 2020, 2, 1.	2.9	23
54	Effect of Combined Metakaolin and Basalt Powder Additions to Laterite-Based Geopolymers Activated by Rice Husk Ash (RHA)/NaOH Solution. Silicon, 2022, 14, 1643-1662.	3.3	23

#	Article	IF	CITATIONS
55	Binder Chemistry – Low-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 93-123.	0.7	23
56	Influence of mineralogy and activator type on the rheology behaviour and setting time of laterite based geopolymer paste. Cement and Concrete Composites, 2022, 126, 104345.	10.7	23
57	Geopolymer Development by Powders of Metakaolin and Wastes in Thailand. Advances in Science and Technology, 0, , .	0.2	22
58	Porcelain stoneware with pegmatite and nepheline syenite solid solutions: Pore size distribution and descriptive microstructure. Journal of the European Ceramic Society, 2013, 33, 2775-2784.	5.7	22
59	Cold-setting refractory composites from cordierite and mullite–cordierite design with geopolymer paste as binder: Thermal behavior and phase evolution. Materials Chemistry and Physics, 2015, 154, 66-77.	4.0	22
60	Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. Journal of Asian Ceramic Societies, 2019, 7, 199-212.	2.3	22
61	Preparation of low-cost nano and microcomposites from chicken eggshell, nano-silica and rice husk ash and their utilisations as additives for producing geopolymer cements. Journal of Asian Ceramic Societies, 2020, 8, 149-161.	2.3	22
62	Dependence of the geopolymerization process and end-products to the nature of solid precursors: Challenge of the sustainability. Journal of Cleaner Production, 2021, 278, 123587.	9.3	22
63	Influence of fine aggregates on the microstructure, porosity and chemico-mechanical stability of inorganic polymer concretes. Construction and Building Materials, 2015, 96, 473-483.	7.2	21
64	Transformation of the geopolymer gels to crystalline bonds in cold-setting refractory concretes: Pore evolution, mechanical strength and microstructure. Materials and Design, 2015, 88, 336-344.	7.0	21
65	Self-compacting geopolymer concretes: Effects of addition of aluminosilicate-rich fines. Journal of Building Engineering, 2016, 5, 211-221.	3.4	21
66	Thermal behaviour and microstructural evolution of metakaolin and meta-halloysite-based geopolymer binders: a comparative study. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2055-2071.	3.6	21
67	Investigation of the relationship between the condensed structure and the chemically bonded water content in the poly(sialate-siloxo) network. Applied Clay Science, 2018, 156, 77-86.	5.2	20
68	Service life prediction for refractory materials. Journal of Materials Science, 2008, 43, 4079-4090.	3.7	19
69	Synergetic effect of rice husk ash and quartz sand on microstructural and physical properties of laterite clay based geopolymer. Journal of Building Engineering, 2021, 43, 103229.	3.4	19
70	Microstructural and mechanical properties of (Ca, Na)-poly(sialate-siloxo) from metakaolin as aluminosilicate and calcium silicate from precipitated silica and calcined chicken eggshell. Construction and Building Materials, 2019, 201, 662-675.	7.2	18
71	Design of ceramic filters using Clay/Sawdust composites: Effect of pore network on the hydraulic permeability. Ceramics International, 2017, 43, 4496-4507.	4.8	17
72	Influence of alumina on the compressive strengths and microstructural properties of the acid-based geopolymers from calcined indurated laterite and metakaolin. Applied Clay Science, 2021, 209, 106148.	5.2	17

#	Article	IF	CITATIONS
73	Use of bauxite from Cameroon for solid state sintering and characterization of calcium dialuminate (CaO·2Al2O3) refractory cement. Ceramics International, 2014, 40, 1961-1970.	4.8	16
74	Elaboration of a new ceramic membrane support from Cameroonian clays, coconut husks and eggshells: Application for Escherichia coli bacteria retention. Applied Clay Science, 2020, 198, 105836.	5.2	16
75	Resistance of Alkali-Activated Blended Volcanic Ash-MSWI-FA Mortar in Sulphuric Acid and Artificial Seawater. Silicon, 2022, 14, 2687-2694.	3.3	16
76	Effects of curing cycles on developing strength and microstructure of goethite-rich aluminosilicate (corroded laterite) based geopolymer composites. Materials Chemistry and Physics, 2021, 270, 124864.	4.0	16
77	Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites. Journal of Thermal Analysis and Calorimetry, 2014, 117, 1035-1045.	3.6	15
78	The role of kyanite in the improvement in the crystallization and densification of the high strength mullite matrix. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1211-1222.	3.6	15
79	Improving insulation in metakaolin based geopolymer: Effects of metabauxite and metatalc. Journal of Building Engineering, 2019, 23, 403-415.	3.4	15
80	Investigation of Groundnut Shell Powder on Development of Lightweight Metakaolin Based Geopolymer Composite: Mechanical and Microstructural Properties. Silicon, 2022, 14, 449-461.	3.3	15
81	Influence of the synthetic calcium aluminate hydrate and the mixture of calcium aluminate and silicate hydrates on the compressive strengths and the microstructure of metakaolin-based geopolymer cements. Materials Chemistry and Physics, 2021, 264, 124459.	4.0	15
82	Performance of geopolymer composites made with feldspathic solid solutions: Micromechanics and microstructure. Cement and Concrete Composites, 2021, 124, 104241.	10.7	15
83	Sintering behaviors of two porcelainized stoneware compositions using pegmatite and nepheline syenite minerals. Journal of Thermal Analysis and Calorimetry, 2013, 114, 113-123.	3.6	14
84	Thermal behaviour and phases evolution during the sintering of porous inorganic membranes. Journal of the European Ceramic Society, 2020, 40, 2151-2162.	5.7	14
85	Alkali-activated laterite binders: Influence of silica modulus on setting time, Rheological behaviour and strength development. Cleaner Engineering and Technology, 2021, 4, 100175.	4.0	14
86	Properties of Geopolymers Made from Fired Clay Bricks Wastes and Rice Husk Ash (RHA)-Sodium Hydroxide (NaOH) Activator. Materials Sciences and Applications, 2017, 08, 537-552.	0.4	14
87	Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. Journal of Thermal Analysis and Calorimetry, 2009, 98, 757-763.	3.6	13
88	Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control. Materials, 2016, 9, 410.	2.9	13
89	Design and characterization of porous mullite based semi-vitrified ceramics. Ceramics International, 2018, 44, 7939-7948.	4.8	13
90	Mechanical Properties and Microstructure of a Metakaolin-Based Inorganic Polymer Mortar Reinforced with Quartz Sand. Silicon, 2022, 14, 263-274.	3.3	13

#	Article	IF	CITATIONS
91	Correlation between microstructural evolution and mechanical properties of <i>î±</i> -quartz and alumina reinforced K-geopolymers during high temperature treatments. Advances in Applied Ceramics, 2012, 111, 120-128.	1.1	12
92	Influence of the molar ratios CaO/SiO2 contained in the sustainable microcomposites on the mechanical and microstructural properties of (Ca, Na)-poly(sialate-siloxo) networks. Materials Chemistry and Physics, 2019, 238, 121928.	4.0	12
93	Reaction kinetics and microstructural characteristics of iron-rich-laterite-based phosphate binder. Construction and Building Materials, 2022, 320, 126302.	7.2	12
94	Microstuctural evolution during thermal treatment of three kaolinitic clays from Cameroon. Advances in Applied Ceramics, 2009, 108, 338-346.	1.1	11
95	Moisture Control Capacity of Geopolymer Composites: Correlation of the Bulk Composition–Pore Network with the Absorption–Desorption Behavior. Transport in Porous Media, 2018, 122, 77-95.	2.6	11
96	Non-contact dilatometry of hard and soft porcelain compositions. Journal of Thermal Analysis and Calorimetry, 2007, 88, 571-576.	3.6	10
97	Production of Porous Poly(phospho-siloxo) Networks for Thermal Insulations Using Low-Value Calcium-Rich Wastes as Pore-Forming Agents. Waste and Biomass Valorization, 2020, 11, 5857-5875.	3.4	10
98	Enhancing the crystallization phenomena and strength of porcelain stoneware: the role of CaO. Journal of Thermal Analysis and Calorimetry, 2021, 144, 91-106.	3.6	10
99	The role of kyanite in the crystallization and densification of the high strength mullite matrix composites. Journal of Thermal Analysis and Calorimetry, 2018, 131, 969-982.	3.6	10
100	In vitro surface reaction in SBF of a non-crystalline aluminosilicate (geopolymer) material. Journal of the Australian Ceramic Society, 2019, 55, 11-17.	1.9	9
101	Mechanical Performance, Phase Evolution and Microstructure of Natural Feldspathic Solid Solutions Consolidated Via Alkali Activation: Effect of NaOH Concentration. Silicon, 2022, 14, 4107-4120.	3.3	9
102	Characterization, reactivity and rheological behaviour of metakaolin and Meta-halloysite based geopolymer binders. Cleaner Materials, 2021, 2, 100025.	5.1	9
103	Particles size and distribution on the improvement of the mechanical performance of high strength solid solution based inorganic polymer composites: A microstructural approach. Materials Chemistry and Physics, 2021, 267, 124602.	4.0	8
104	Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature. Silicon, 2022, 14, 7399-7416.	3.3	8
105	Feasibilty of valorizing quarry wastes in the synthesis of geopolymer binders: engineering performances and microstructure. Environmental Science and Pollution Research, 2022, 29, 50804-50818.	5.3	8
106	Sintering behaviour, microstructure and mechanical properties of low quartz content vitrified ceramics using volcanic ash. Advances in Applied Ceramics, 2008, 107, 19-26.	1.1	7
107	Semi-vitrified porous kyanite mullite ceramics: Young modulus, microstructure and pore size evolution. SN Applied Sciences, 2020, 2, 1.	2.9	7
108	Synthesis of Volcanic Ashâ€based Porous Inorganic Polymers Using Biomass as Pore Inducing Agent: Phase Evolution and Descriptive Microstructure. Silicon, 2022, 14, 2595-2608.	3.3	7

#	Article	IF	CITATIONS
109	Controlling the Thermal Stability of Kyanite-Based Refractory Geopolymers. Materials, 2021, 14, 2903.	2.9	7
110	Alkali-silica reactions in granite-based aggregates: The role of biotite and pyrite. Construction and Building Materials, 2022, 320, 126259.	7.2	7
111	Engineering properties, phase evolution and microstructure of the iron-rich aluminosilicates-cement based composites: Cleaner production of energy efficient and sustainable materials. Cleaner Materials, 2021, 1, 100017.	5.1	6
112	A Low Thermal Conductivity of Lightweight Laterite-cement Composites with Cotton Wastes Fibres. Silicon, 2022, 14, 8205-8222.	3.3	6
113	Descriptive microstructure and fracture surface observations of fired volcanic ash. Journal of Materials Science, 2009, 44, 4944-4952.	3.7	5
114	Refractory ceramics bonds from potassium-based inorganic polymer for advanced applications: Crystalline phase changes and descriptive microstructure. Ceramics International, 2022, 48, 21579-21588.	4.8	5
115	Mineralogical and Physical Changes during Sintering of Plastic Red Clays from Sanaga Swampy Valley, Cameroon. InterCeram: International Ceramic Review, 2014, 63, 186-192.	0.2	4
116	Geopolymerization as Cold-Consolidation Techniques for Hazardous and Non-Hazardous Wastes. Key Engineering Materials, 2017, 751, 527-531.	0.4	4
117	Microstructure and physico-chemical transformation of some common woods from Cameroon during drying. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3003-3018.	3.6	4
118	Synthesis and characterization of eco-friendly mortars made with RHA-NaOH activated fly ash as binder at room temperature. Cleaner Materials, 2021, 1, 100010.	5.1	4
119	Physico-mechanical and microstructural properties of geopolymer binders synthesized with metakaolin and meta-halloysite as precursors. Cleaner Materials, 2022, 4, 100070.	5.1	4
120	Marble wastes recycling: Design and synthesis of low-temperature calcium silicate hydrate under various CaO:SiO2 ratio and alkalinity. Materialia, 2021, 20, 101224.	2.7	3
121	Design of porous Geopolymers for hygrothermal applications: role of nano and meso porosity. Silicon, 2022, 14, 10045-10059.	3.3	3
122	Valorization of marble powder wastes using rice husk ash to yield enhanced-performance inorganic polymer cements: Phase evolution, microstructure, and micromechanics analyses. Cleaner Engineering and Technology, 2022, 8, 100461.	4.0	3
123	Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223, 183-191.	1.1	2
124	DEHYDRATION, DEHYDROXYLATION, DENSIFICATION AND DEFORMATION DURING SINTERING OF GEOPOLYMERS BASED ON THE K 2 O-AL 2 O 3 -SIO 2 SYSTEM. , 2009, , 217.		2
125	Dependence of the insulating behavior of some common woods to the pore network and packing density of their fibers: a microstructural approach. Transport in Porous Media, 2021, 138, 309-336.	2.6	1
126	Bi-Axial Four Points Flexural and Compressive Strength of Geopolymer Materials Based Na2O-K2O-Al2O3-SiO2 Systems. Ceramic Engineering and Science Proceedings, 0, , 155-164.	0.1	1