
Pedro Lax

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/924078/publications.pdf Version: 2024-02-01

DEDROLA

#	Article	lF	CITATIONS
1	Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases. Neural Regeneration Research, 2022, 17, 103.	3.0	7
2	Combined drug triads for synergic neuroprotection in retinal degeneration. Biomedicine and Pharmacotherapy, 2022, 149, 112911.	5.6	7
3	Neuroprotective Effects of Tauroursodeoxicholic Acid Involves Vascular and Glial Changes in Retinitis Pigmentosa Model. Frontiers in Neuroanatomy, 2022, 16, 858073.	1.7	2
4	Sodium Hyaluronate-Induced Ocular Hypertension in Rats Damages the Direction-Selective Circuit and Inner/Outer Retinal Plexiform Layers. , 2022, 63, 2.		6
5	Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants, 2022, 11, 1086.	5.1	14
6	Retinitis pigmentosa is associated with shifts in the gut microbiome. Scientific Reports, 2021, 11, 6692.	3.3	16
7	Decrease in DHA and other fatty acids correlates with photoreceptor degeneration in retinitis pigmentosa. Experimental Eye Research, 2021, 209, 108667.	2.6	9
8	Short-term high-fat feeding exacerbates degeneration in retinitis pigmentosa by promoting retinal oxidative stress and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
9	Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Progress in Retinal and Eye Research, 2020, 77, 100828.	15.5	77
10	Gradual Increase in Environmental Light Intensity Induces Oxidative Stress and Inflammation and Accelerates Retinal Neurodegeneration. , 2020, 61, 1.		23
11	Dopaminergic Retinal Cell Loss and Visual Dysfunction in Parkinson Disease. Annals of Neurology, 2020, 88, 893-906.	5.3	52
12	Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. International Journal of Molecular Sciences, 2019, 20, 3164.	4.1	36
13	The Absence of Toll-Like Receptor 4 Mildly Affects the Structure and Function in the Adult Mouse Retina. Frontiers in Cellular Neuroscience, 2019, 13, 59.	3.7	10
14	Cannabinoid-mediated retinal rescue correlates with improved circadian parameters in retinal dystrophic rats. Experimental Eye Research, 2019, 180, 192-199.	2.6	4
15	Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death and Disease, 2018, 9, 350.	6.3	55
16	Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson's disease. Acta Neuropathologica Communications, 2018, 6, 90.	5.2	56
17	Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Frontiers in Neuroanatomy, 2018, 12, 55.	1.7	22
18	New Nrf2-Inducer Compound ITH12674 Slows the Progression of Retinitis Pigmentosa in the Mouse Model rd10. Cellular Physiology and Biochemistry, 2018, 54, 142-159.	1.6	18

Pedro Lax

#	Article	IF	CITATIONS
19	CHAPTER 1. The Cellular Course of Retinal Degenerative Conditions. RSC Drug Discovery Series, 2018, , 1-30.	0.3	1
20	Loss of Melanopsin-Expressing Ganglion Cell Subtypes and Dendritic Degeneration in the Aging Human Retina. Frontiers in Aging Neuroscience, 2017, 9, 79.	3.4	68
21	Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats. PLoS ONE, 2017, 12, e0177998.	2.5	39
22	Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE, 2016, 11, e0165197.	2.5	44
23	Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Scientific Reports, 2016, 6, 33356.	3.3	47
24	Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence. Experimental Eye Research, 2016, 150, 122-134.	2.6	24
25	Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiology International, 2016, 33, 374-391.	2.0	27
26	Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules, 2015, 20, 13875-13893.	3.8	35
27	Astrocytes and MÃ1⁄4ller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Frontiers in Cellular Neuroscience, 2015, 9, 484.	3.7	86
28	Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration. PLoS ONE, 2015, 10, e0137826.	2.5	29
29	Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects. Journal of Neuroinflammation, 2014, 11, 186.	7.2	81
30	Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Progress in Retinal and Eye Research, 2014, 43, 17-75.	15.5	338
31	Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Experimental Eye Research, 2014, 120, 175-185.	2.6	52
32	Characterization of a new murine retinal cell line (MU-PH1) with glial, progenitor and photoreceptor characteristics. Experimental Eye Research, 2013, 110, 125-135.	2.6	8
33	Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration. , 2013, 54, 4605.		36
34	Circadian Dysfunction in a Rotenone-Induced Parkinsonian Rodent Model. Chronobiology International, 2012, 29, 147-156.	2.0	28
35	Proinsulin Slows Retinal Degeneration and Vision Loss in the P23H Rat Model of Retinitis Pigmentosa. Human Gene Therapy, 2012, 23, 1290-1300.	2.7	33
36	Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats. PLoS ONE, 2012, 7, e43074.	2.5	70

Pedro Lax

#	Article	IF	CITATIONS
37	Circadian dysfunction in P23H rhodopsin transgenic rats: effects of exogenous melatonin. Journal of Pineal Research, 2011, 50, 183-191.	7.4	30
38	Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiology of Disease, 2011, 44, 102-115.	4.4	47
39	Tauroursodeoxycholic Acid Prevents Retinal Degeneration in Transgenic P23H Rats. , 2011, 52, 4998.		81
40	Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells. Visual Neuroscience, 2010, 27, 139-147.	1.0	24
41	Melatonin inhibits nicotinic currents in cultured rat cerebellar granule neurons. Journal of Pineal Research, 2007, 44, 070924025716001-???.	7.4	11
42	Fractional Ca 2+ current through human neuronal α7 nicotinic acetylcholine receptors. Cell Calcium, 2003, 34, 205-209.	2.4	61
43	Nicotine modulates the spontaneous synaptic activity in cultured embryonic rat spinal cord interneurons. Journal of Neuroscience Research, 2002, 67, 329-336.	2.9	9
44	Macronutrient Self-Selection Pattern in Rats under Different Lighting Conditions. Biological Rhythm Research, 2000, 31, 71-87.	0.9	0
45	Food Entrainment to 4-h T Cycles in Rats Kept Under Constant Lighting Conditions. Physiology and Behavior, 1999, 67, 307-314.	2.1	2
46	Food-Entrained Feeding and Locomotor Circadian Rhythms in Rats Under Different Lighting Conditions. Chronobiology International, 1999, 16, 281-291.	2.0	21
47	Repeated short-fasting modifies the macronutrient self-selection pattern in rats. Physiology and Behavior, 1998, 65, 69-76.	2.1	24
48	Coupling effect of locomotor activity on the rat's circadian system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R580-R587.	1.8	12
49	A contact eatometer suitable for feeding restriction schedules. Physiology and Behavior, 1996, 59, 1179-1183.	2.1	7