
Lenka MaletÃ-nskÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9240265/publications.pdf

Version: 2024-02-01

Ι ενικά Μαι ετδριςκά:

#	Article	IF	CITATIONS
1	Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutrition and Diabetes, 2022, 12, 26.	3.2	3
2	lodination of CART(61â€102) peptide: Preserved binding and anorexigenic activity in mice. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 61-64.	1.0	2
3	GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene, 2021, 774, 145427.	2.2	10
4	Sweet taste of heavy water. Communications Biology, 2021, 4, 440.	4.4	19
5	Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. Journal of Neuroinflammation, 2021, 18, 141.	7.2	17
6	Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study. International Journal of Molecular Sciences, 2021, 22, 8904.	4.1	8
7	Cholecystokinin system is involved in the anorexigenic effect of peripherally applied palmitoylated prolactin-releasing peptide in fasted mice. Physiological Research, 2021, 70, 579-590.	0.9	2
8	Palmitoylated Prolactin-releasing Peptide Reduced AÎ ² Plaques and Microgliosis in the Cerebellum: APP/PS1 Mice Study. Current Alzheimer Research, 2021, 18, 607-622.	1.4	4
9	Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models. Frontiers in Pharmacology, 2021, 12, 779962.	3.5	4
10	Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Frontiers in Endocrinology, 2020, 11, 597583.	3.5	42
11	Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells. International Journal of Molecular Sciences, 2020, 21, 6343.	4.1	6
12	Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer's-like pathology. Analyst, The, 2020, 145, 4595-4605.	3.5	12
13	Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology?. Clinical Science, 2020, 134, 547-570.	4.3	31
14	Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. Journal of Molecular Endocrinology, 2020, 64, 77-90.	2.5	11
15	Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. International Journal of Molecular Sciences, 2019, 20, 5297.	4.1	22
16	Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. Journal of Alzheimer's Disease, 2019, 67, 1187-1200.	2.6	6
17	High-fructose drinks affect microRNAs expression differently in lean and obese mice. Journal of Nutritional Biochemistry, 2019, 68, 42-50.	4.2	16
18	Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. Journal of Proteome Research, 2019, 18, 1735-1750.	3.7	8

Lenka MaletÃnskÃi

#	Article	IF	CITATIONS
19	Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: the Effect of Vildagliptin, Metformin, and Their Combination. Applied Biochemistry and Biotechnology, 2019, 188, 165-184.	2.9	11
20	Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology, 2019, 144, 377-387.	4.1	52
21	The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. Journal of Endocrinology, 2019, 240, R47-R72.	2.6	16
22	Repeated peripheral administration of lipidized prolactin-releasing peptide analog induces c-fos and FosB expression in neurons of dorsomedial hypothalamic nucleus in male C57 mice. Neurochemistry International, 2018, 116, 77-84.	3.8	7
23	Novel Lipidized Analog of Prolactin-Releasing Peptide Improves Memory Impairment and Attenuates Hyperphosphorylation of Tau Protein in a Mouse Model of Tauopathy. Journal of Alzheimer's Disease, 2018, 62, 1725-1736.	2.6	15
24	Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutrition and Diabetes, 2018, 8, 5.	3.2	15
25	Application of matrix-assisted laser desorption/ionization mass spectrometry imaging in combination with LC–MS in pharmacokinetic study of metformin. Bioanalysis, 2018, 10, 71-81.	1.5	4
26	Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. Journal of Molecular Endocrinology, 2018, 60, 85-94.	2.5	6
27	In Vitro and In Vivo Characterization of Novel Stable Peptidic Ghrelin Analogs: Beneficial Effects in the Settings of Lipopolysaccharide-Induced Anorexia in Mice. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 422-432.	2.5	5
28	Novel approach to determine ghrelin analogs by liquid chromatography with mass spectrometry using a monolithic column. Journal of Separation Science, 2017, 40, 1032-1039.	2.5	7
29	Lipopeptides as therapeutics: applications andin vivoquantitative analysis. Bioanalysis, 2017, 9, 215-230.	1.5	5
30	LC–MS/MS analysis of lipidized analogs of prolactin-releasing peptide utilizing a monolithic column and simple sample preparation. Bioanalysis, 2017, 9, 1319-1328.	1.5	4
31	Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE, 2017, 12, e0183449.	2.5	35
32	Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Molecular and Cellular Endocrinology, 2016, 431, 88-100.	3.2	34
33	Prolactin-releasing peptide: a new tool for obesity treatment. Journal of Endocrinology, 2016, 230, R51-R58.	2.6	33
34	Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Analytical and Bioanalytical Chemistry, 2016, 408, 567-578.	3.7	26
35	Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides, 2016, 75, 109-117.	2.4	18
36	Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. Journal of Endocrinology, 2016, 229, 85-96.	2.6	19

Lenka MaletÃnskÃi

#	Article	IF	CITATIONS
37	Anorexigenic Lipopeptides Ameliorate Central Insulin Signaling and Attenuate Tau Phosphorylation in Hippocampi of Mice with Monosodium Glutamate-Induced Obesity. Journal of Alzheimer's Disease, 2015, 45, 823-835.	2.6	39
38	Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Research, 2015, 1625, 151-158.	2.2	11
39	Strategy for NMR metabolomic analysis of urine in mouse models of obesity— from sample collection to interpretation of acquired data. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 225-235.	2.8	17
40	Structural and Functional Study of the GlnB22-Insulin Mutant Responsible for Maturity-Onset Diabetes of the Young. PLoS ONE, 2014, 9, e112883.	2,5	22
41	Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats. BMC Neuroscience, 2014, 15, 111.	1.9	27
42	Obesity-related hypertension: possible pathophysiological mechanisms. Journal of Endocrinology, 2014, 223, R63-R78.	2.6	113
43	CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Research, 2014, 1547, 16-24.	2.2	20
44	Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Research, 2013, 1498, 33-40.	2.2	33
45	New analogs of the CART peptide with anorexigenic potency: The importance of individual disulfide bridges. Peptides, 2013, 39, 138-144.	2.4	11
46	Characterization of New Stable Ghrelin Analogs with Prolonged Orexigenic Potency. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 781-786.	2.5	19
47	Characterization of prolactin-releasing peptide: Binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides, 2011, 32, 811-817.	2.4	22
48	Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides, 2011, 32, 1887-1892.	2.4	14
49	Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides, 2010, 31, 139-144.	2.4	15
50	Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neuroscience, 2008, 9, 101.	1.9	25
51	Structure–activity relationship of CART (cocaine- and amphetamine-regulated transcript) peptide fragments. Peptides, 2007, 28, 1945-1953.	2.4	25
52	Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12. European Journal of Pharmacology, 2007, 559, 109-114.	3.5	41
53	Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice. Regulatory Peptides, 2006, 136, 58-63.	1.9	24
54	Magnesium and biological activity of oxytocin analogues modified on aromatic ring of amino acid in position 2. Journal of Peptide Science, 2001, 7, 413-424.	1.4	5

#	ARTICLE	IF	CITATIONS
55	Pharmacological characterization of new cholecystokinin analogues. European Journal of Pharmacology, 1992, 222, 233-240.	3.5	15