List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9239912/publications.pdf Version: 2024-02-01

KEVIN M SHANNON

#	Article	IF	CITATIONS
1	MEK inhibitors for neurofibromatosis type 1 manifestations: Clinical evidence and consensus. Neuro-Oncology, 2022, 24, 1845-1856.	0.6	30
2	ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth. Nature Chemical Biology, 2021, 17, 856-864.	3.9	49
3	Chemical proteomic analysis of palmostatin beta-lactone analogs that affect N-Ras palmitoylation. Bioorganic and Medicinal Chemistry Letters, 2021, 53, 128414.	1.0	2
4	<i>Nf1</i> -Mutant Tumors Undergo Transcriptome and Kinome Remodeling after Inhibition of either mTOR or MEK. Molecular Cancer Therapeutics, 2020, 19, 2382-2395.	1.9	3
5	Soil and Seed: Coconspirators in Therapy-Induced Myeloid Neoplasms. Blood Cancer Discovery, 2020, 1, 10-12.	2.6	1
6	Genetic disruption of N-RasG12D palmitoylation perturbs hematopoiesis and prevents myeloid transformation in mice. Blood, 2020, 135, 1772-1782.	0.6	18
7	Loss of glucocorticoid receptor expression mediates in vivo dexamethasone resistance in T-cell acute lymphoblastic leukemia. Leukemia, 2020, 34, 2025-2037.	3.3	27
8	KrasP34R and KrasT58I mutations induce distinct RASopathy phenotypes in mice. JCI Insight, 2020, 5, .	2.3	10
9	Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. Journal of Clinical Investigation, 2020, 130, 863-876.	3.9	36
10	Co-Targeting BET Bromodomain Proteins and Aberrant Signaling in AML. Blood, 2020, 136, 5-6.	0.6	0
11	CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition. PLoS ONE, 2019, 14, e0220026.	1.1	16
12	Convergent genetic aberrations in murine and human T lineage acute lymphoblastic leukemias. PLoS Genetics, 2019, 15, e1008168.	1.5	5
13	High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Cell Reports, 2019, 27, 631-647.e5.	2.9	9
14	Mechanistic and Preclinical Insights from Mouse Models of Hematologic Cancer Characterized by Hyperactive Ras. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031526.	2.9	3
15	Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCl Insight, 2018, 3, .	2.3	71
16	Widespread Selection for Oncogenic Mutant Allele Imbalance in Cancer. Cancer Cell, 2018, 34, 852-862.e4.	7.7	73
17	Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy. PLoS ONE, 2018, 13, e0193849.	1.1	14
18	Catheter Ablation of Ventricular Arrhythmia for Ebstein's Anomaly in Unoperated and Post-Surgical Patients. JACC: Clinical Electrophysiology, 2018, 4, 1300-1307.	1.3	19

#	Article	IF	CITATIONS
19	Implantation techniques and outcomes after cardiac resynchronization therapy for congenitally corrected transposition of the great arteries. Heart Rhythm, 2018, 15, 1808-1815.	0.3	26
20	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	5.2	189
21	Glucocorticoids Paradoxically Induce Intrinsic Steroid Resistance through a STAT5-Mediated Survival Mechanism in T-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 913-913.	0.6	0
22	KRAS Allelic Imbalance Enhances Fitness and Modulates MAP Kinase Dependence in Cancer. Cell, 2017, 168, 817-829.e15.	13.5	148
23	The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nature Medicine, 2017, 23, 301-313.	15.2	79
24	A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Research, 2017, 77, 5706-5711.	0.4	22
25	Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency. Haematologica, 2016, 101, 1190-1199.	1.7	14
26	KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nature Communications, 2016, 7, 10647.	5.8	15
27	KRAS Engages AGO2 to Enhance Cellular Transformation. Cell Reports, 2016, 14, 1448-1461.	2.9	41
28	Targeting the Creatine Kinase Pathway in EVI1-Positive Acute Myeloid Leukemia. Blood, 2016, 128, 523-523.	0.6	0
29	Resistant T-Cell Acute Lymphoblastic Leukemias That Emerge after In Vivo Treatment with Dexamethasone Frequently Down-Regulate Glucocorticoid Receptor Protein Expression. Blood, 2016, 128, 753-753.	0.6	7
30	Response and Resistance to Bromodomain Inhibition in AML Driven By Hyperactive Ras Signaling. Blood, 2016, 128, 1654-1654.	0.6	0
31	Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nature Genetics, 2015, 47, 539-543.	9.4	39
32	Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. ELife, 2015, 4, .	2.8	17
33	Identification of CKMT1B As a New Target in EVI1-Positive AML. Blood, 2015, 126, 3674-3674.	0.6	0
34	NRAS G12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia. Blood, 2014, 124, 3274-3283.	0.6	24
35	Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke. BMC Cancer, 2014, 14, 6.	1.1	12
36	MLL3 Is a Haploinsufficient 7q Tumor Suppressor in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 652-665.	7.7	274

#	Article	IF	CITATIONS
37	Phase II Study of the Oral MEK Inhibitor Selumetinib in Advanced Acute Myelogenous Leukemia: A University of Chicago Phase II Consortium Trial. Clinical Cancer Research, 2014, 20, 490-498.	3.2	99
38	Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature, 2014, 513, 512-516.	13.7	60
39	Preclinical efficacy of MEK inhibition in Nras-mutant AML. Blood, 2014, 124, 3947-3955.	0.6	79
40	Mutations in GATA2 are rare in juvenile myelomonocytic leukemia. Blood, 2014, 123, 1426-1427.	0.6	12
41	A(nother) RAF mutation in LCH. Blood, 2014, 123, 3063-3065.	0.6	5
42	Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature, 2013, 504, 143-147.	13.7	101
43	Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis. Science Signaling, 2013, 6, ra21.	1.6	45
44	Dominant Role of Oncogene Dosage and Absence of Tumor Suppressor Activity in <i>Nras-</i> Driven Hematopoietic Transformation. Cancer Discovery, 2013, 3, 993-1001.	7.7	60
45	PLC-Î ³ and PI3K Link Cytokines to ERK Activation in Hematopoietic Cells with Normal and Oncogenic <i>Kras</i> . Science Signaling, 2013, 6, ra105.	1.6	12
46	Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Blood, 2013, 121, 4884-4893.	0.6	26
47	Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. Journal of Clinical Investigation, 2013, 123, 335-339.	3.9	119
48	Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood, 2012, 119, 1032-1035.	0.6	66
49	Advancing the STATus of MPN pathogenesis. Blood, 2012, 119, 3374-3376.	0.6	2
50	Targeting oncogenic Ras signaling in hematologic malignancies. Blood, 2012, 120, 3397-3406.	0.6	171
51	NF1 Mutations in Hematologic Cancers. , 2012, , 469-485.		1
52	Activated NRAS Mediates Self-Renewal Capacity in AML by Facilitating the Mll/AF9-Specified Gene Expression Signature. Blood, 2012, 120, 5116-5116.	0.6	0
53	Oncogenic Nras Increases Hematopoietic Stem Cell Proliferation and Self-Renewal Through a Bimodal Effect. Blood, 2012, 120, 119-119.	0.6	0
54	The PI3K Inhibitor GDC-0941 Attenuates Disease in a KrasG12D Mouse Model of CMML and JMML Blood, 2012, 120, 2862-2862.	0.6	1

#	Article	IF	CITATIONS
55	Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood, 2011, 117, 2022-2032.	0.6	132
56	Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood, 2011, 117, 4253-4261.	0.6	82
57	Oncogenic Ras scales the ALPS. Blood, 2011, 117, 2747-2748.	0.6	5
58	Dose-Dependent Effects of Focal Fractionated Irradiation on Secondary Malignant Neoplasms in <i>Nf1</i> Mutant Mice. Cancer Research, 2011, 71, 106-115.	0.4	28
59	A MEK Inhibitor Abrogates Myeloproliferative Disease in <i>Kras</i> Mutant Mice. Science Translational Medicine, 2011, 3, 76ra27.	5.8	81
60	Heterozygous Germ Line Deletion of a 2Mb Interval in Mice That Models Loss of 7q22 in Human Myeloid Malignancies Results in Defective Hematopoietic Stem Cell Function Reminiscent of Premature Aging. Blood, 2011, 118, 2340-2340.	0.6	0
61	Delineating Critical Effectors of Remission Induction in a Mouse Model of AML. Blood, 2011, 118, 5232-5232.	0.6	0
62	Mechanisms of Relapse Following Targeted Therapy in An NRASG12V and Mll-AF9 Driven Mouse Model of AML. Blood, 2011, 118, 2620-2620.	0.6	0
63	Use of chromosome engineering to model a segmental deletion of chromosome band 7q22 found in myeloid malignancies. Blood, 2010, 115, 4524-4532.	0.6	24
64	p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes and Development, 2010, 24, 1389-1402.	2.7	148
65	Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. Journal of Experimental Medicine, 2010, 207, 2581-2594.	4.2	58
66	Mutant <i> lkzf1, Kras ^{G12D} </i> , and <i>Notch1</i> cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5106-5111.	3.3	60
67	Genetics, Epigenetics, and Leukemia. New England Journal of Medicine, 2010, 363, 2460-2461.	13.9	14
68	Combination of a MEK Inhibitor, AZD6244, and Dual PI3K/mTOR Inhibitor, NVP-BEZ235: An Effective Therapeutic Strategy for Acute Myeloid Leukemia. Blood, 2010, 116, 3978-3978.	0.6	3
69	Oncogene Withdrawal Selectively Alters Phosphoprotein States and Shifts Differentiation Status In Myeloid Leukemia Subpopulations. Blood, 2010, 116, 3160-3160.	0.6	0
70	Akt Activation Is Important In KRAS-Mediated Multistep Leukemogenesis. Blood, 2010, 116, 4200-4200.	0.6	0
71	Oncogenic Kras Initiates Leukemia in Hematopoietic Stem Cells. PLoS Biology, 2009, 7, e1000059.	2.6	89
72	The SPS Affair: A Complex Tale of Illicit Proliferation. Cancer Cell, 2009, 16, 87-88.	7.7	0

#	Article	IF	CITATIONS
73	Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature, 2009, 461, 411-414.	13.7	141
74	More than kin and less than kind. Nature, 2009, 460, 805-807.	13.7	1
75	A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood, 2009, 113, 1075-1085.	0.6	54
76	Mll5 contributes to hematopoietic stem cell fitness and homeostasis. Blood, 2009, 113, 1455-1463.	0.6	62
77	Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 2009, 114, 1859-1863.	0.6	260
78	De novo HRAS and KRAS mutations in two siblings with short stature and neuro-cardio-facio-cutaneous features. BMJ Case Reports, 2009, 2009, bcr0720080550-bcr0720080550.	0.2	4
79	Germline Mutations in CBL Cause a Predisposition to Juvenile Myelomonocytic Leukemia Blood, 2009, 114, 310-310.	0.6	2
80	Treatment with a MEK Inhibitor Improves Myeloproliferation, Anemia and Survival in a Mouse Model of CMML and JMML Blood, 2009, 114, 966-966.	0.6	1
81	PI3 Kinase, Phospholipase C (PLC)-γ, and RasGRPs Act Cooperatively to Activate the Ras-Extracellular-Related Kinase (ERK) Pathway in Response to Cytokines in Normal and Kras Mutant Myeloid Cells Blood, 2009, 114, 2512-2512.	0.6	0
82	Mutation analysis in Costello syndrome: functional and structural characterization of the <i>HRAS </i> p.Lys117Arg mutation. Human Mutation, 2008, 29, 232-239.	1.1	48
83	Hay in a haystack. Nature, 2008, 451, 252-253.	13.7	16
84	Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nature Genetics, 2008, 40, 600-608.	9.4	514
85	Single-Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid Malignancies with Specific Clinical and Biologic Correlates. Cancer Cell, 2008, 14, 335-343.	7.7	219
86	Tumor suppressor gene inactivation in myeloid malignancies. Best Practice and Research in Clinical Haematology, 2008, 21, 601-614.	0.7	8
87	Targeting Ras in Myeloid Leukemias. Clinical Cancer Research, 2008, 14, 2249-2252.	3.2	57
88	Outcomes in CCG-2961, a Children's Oncology Group Phase 3 Trial for untreated pediatric acute myeloid leukemia: a report from the Children's Oncology Group. Blood, 2008, 111, 1044-1053.	0.6	259
89	De novo HRAS and KRAS mutations in two siblings with short stature and neuro-cardio-facio-cutaneous features. Journal of Medical Genetics, 2007, 44, e84-e84.	1.5	27
90	Targeting oncogenic Ras. Genes and Development, 2007, 21, 1989-1992.	2.7	41

#	Article	IF	CITATIONS
91	Biochemical and Functional Characterization of Germ Line <i>KRAS</i> Mutations. Molecular and Cellular Biology, 2007, 27, 7765-7770.	1.1	80
92	K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood, 2007, 109, 3945-3952.	0.6	103
93	β common receptor inactivation attenuates myeloproliferative disease in Nf1 mutant mice. Blood, 2007, 109, 1687-1691.	0.6	25
94	Abnormal hematopoiesis in Gab2 mutant mice. Blood, 2007, 110, 116-124.	0.6	47
95	Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Current Opinion in Genetics and Development, 2007, 17, 15-22.	1.5	109
96	Sending out an SOS. Nature Genetics, 2007, 39, 8-9.	9.4	19
97	Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 2007, 7, 295-308.	12.8	1,422
98	Kras G12D Expression in Hematopoietic Stem/Progenitor Cells Initiates T Cell Acute Lymphoblastic Leukemia/Lymphoma Blood, 2007, 110, 153-153.	0.6	1
99	Intracellular Signals as Molecular Biomarkers for Therapeutic Responses in Kras Mutant Myeloid Cells Blood, 2007, 110, 2196-2196.	0.6	0
100	Bcl11a Causes p21Cip1 Down-Regulation and Transplantable Leukemia in Nf1-Deficient Mice Blood, 2007, 110, 2657-2657.	0.6	0
101	Leukemogenic K-RasG12D Induces Cell Cycle Entry and Clonal Dominance in Hematopoietic Stem Cells Blood, 2007, 110, 778-778.	0.6	0
102	Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood, 2006, 108, 1684-1689.	0.6	78
103	Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood, 2006, 108, 2041-2044.	0.6	41
104	Reconsidering how we treat severe congenital neutropenia. Blood, 2006, 107, 4575-4576.	0.6	1
105	Inherited predispositions and hyperactive Ras in myeloid leukemogenesis. Pediatric Blood and Cancer, 2006, 46, 579-585.	0.8	103
106	Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 2006, 38, 331-336.	9.4	670
107	Germline Mutations in Components of the Ras Signaling Pathway in Noonan Syndrome and Related Disorders. Cell Cycle, 2006, 5, 1607-1611.	1.3	49
108	Harnessing preclinical mouse models to inform human clinical cancer trials. Journal of Clinical Investigation, 2006, 116, 847-852.	3.9	59

#	Article	IF	CITATIONS
109	Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood, 2005, 106, 311-317.	0.6	138
110	JAKing up hematopoietic proliferation. Cancer Cell, 2005, 7, 291-293.	7.7	31
111	Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell, 2005, 8, 337-348.	7.7	43
112	Granulocyte/macrophage colony-stimulating factor and accessory cells modulate radioprotection by purified hematopoietic cells. Journal of Experimental Medicine, 2005, 201, 853-858.	4.2	8
113	Isolation and analysis of candidate myeloid tumor suppressor genes from a commonly deleted segment of 7q22. Genomics, 2005, 85, 600-607.	1.3	49
114	Novel Germ Line Mutations in the KRAS2 Gene Cause Noonan Syndrome and Deregulate Hematopoietic Cell Growth Blood, 2005, 106, 1602-1602.	0.6	0
115	Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 597-602.	3.3	279
116	The sum is greater than the FGFR1 partner. Cancer Cell, 2004, 5, 203-204.	7.7	4
117	Focus on myeloproliferative diseases and myelodysplastic syndromes. Cancer Cell, 2004, 6, 547-552.	7.7	87
118	RAS,FLT3, andTP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes and Cancer, 2004, 39, 217-223.	1.5	62
119	SHP-2 and myeloid malignancies. Current Opinion in Hematology, 2004, 11, 44-50.	1.2	106
120	Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood, 2004, 103, 4243-4250.	0.6	162
121	Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood, 2004, 103, 2325-2331.	0.6	415
122	A "Ras-in-ALL―model of signaling?. Blood, 2004, 104, 297-298.	0.6	0
123	Genetic Dissection of Cooperating Mutations in BXH-2 Acute Myeloid Leukemia with and without Nf1 Gene Mutation Blood, 2004, 104, 2567-2567.	0.6	Ο
124	Mouse cancer models as a platform for performing preclinical therapeutic trials. Current Opinion in Genetics and Development, 2003, 13, 84-89.	1.5	22
125	IL-3 receptor signaling is dispensable for BCR-ABL-induced myeloproliferative disease. Proceedings of the United States of America, 2003, 100, 11630-11635.	3.3	15
126	Acute Myeloid Leukemia Associated With t(8;21) or Trisomy 8 in Children With Neurofibromatosis, Type 1. Journal of Pediatric Hematology/Oncology, 2003, 25, 343.	0.3	4

#	Article	IF	CITATIONS
127	Hematologic effects of inactivating the Ras processing enzymeRce1. Blood, 2003, 101, 2250-2252.	0.6	20
128	Leukemic potential of doubly mutant Nf1 andWv hematopoietic cells. Blood, 2003, 101, 1984-1986.	0.6	14
129	Ras processing as a therapeutic target in hematologic malignancies. Current Opinion in Hematology, 2002, 9, 308-315.	1.2	33
130	Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor. Blood, 2002, 99, 372-374.	0.6	32
131	Resistance in the land of molecular cancer therapeutics. Cancer Cell, 2002, 2, 99-102.	7.7	66
132	Acute leukemia: A pediatric perspective. Cancer Cell, 2002, 2, 437-445.	7.7	68
133	Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell, 2002, 2, 507-514.	7.7	60
134	GTPase activating proteins: critical regulators of intracellular signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2002, 1602, 23-45.	3.3	117
135	MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene, 2002, 21, 4849-4854.	2.6	92
136	Candidate Gene Isolation and Comparative Analysis of a Commonly Deleted Segment of 7q22 Implicated in Myeloid Malignancies. Genomics, 2001, 77, 171-180.	1.3	43
137	Leukemic Transformation in Patients With Severe Congenital Neutropenia. The American Journal of Pediatric Hematology/oncology, 2001, 23, 487-495.	1.3	9
138	Modeling myeloid leukemia tumor suppressor gene inactivation in the mouse. Seminars in Cancer Biology, 2001, 11, 191-199.	4.3	15
139	Quantitative effects of Nf1 inactivation on in vivo hematopoiesis. Journal of Clinical Investigation, 2001, 108, 709-715.	3.9	39
140	Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood, 2000, 96, 2310-2313.	0.6	48
141	Genetic and Biochemical Evidence That Haploinsufficiency of the Nf1 Tumor Suppressor Gene Modulates Melanocyte and Mast Cell Fates in Vivo. Journal of Experimental Medicine, 2000, 191, 181-188.	4.2	168
142	Nf1 and Gmcsf Interact in Myeloid Leukemogenesis. Molecular Cell, 2000, 5, 189-195.	4.5	132
143	Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood, 2000, 96, 2310-2313.	0.6	2
144	In Vitro and In Vivo Effects of a Farnesyltransferase Inhibitor onNf1-Deficient Hematopoietic Cells. Blood, 1999, 94, 2469-2476.	0.6	81

#	Article	IF	CITATIONS
145	Myeloid Malignancies Induced by Alkylating Agents in Nf1 Mice. Blood, 1999, 93, 3617-3623.	0.6	55
146	Myelodysplastic and Myeloproliferative Disorders of Childhood: A Study of 167 Patients. Blood, 1999, 93, 459-466.	0.6	221
147	Disruption of the Mouse Rce1 Gene Results in Defective Ras Processing and Mislocalization of Ras within Cells. Journal of Biological Chemistry, 1999, 274, 8383-8390.	1.6	161
148	Transient monosomy 7. , 1999, 85, 2655-2661.		51
149	Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. , 1999, 89, 14-22.		119
150	Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. American Journal of Medical Genetics Part A, 1999, 89, 14-22.	2.4	2
151	Myeloid Malignancies Induced by Alkylating Agents in Nf1 Mice. Blood, 1999, 93, 3617-3623.	0.6	6
152	Myelodysplastic and Myeloproliferative Disorders of Childhood: A Study of 167 Patients. Blood, 1999, 93, 459-466.	0.6	5
153	RAS mutations in pediatric leukemias withMLL gene rearrangements. , 1998, 21, 270-275.		32
154	Nf1 Regulates Hematopoietic Progenitor Cell Growth and Ras Signaling in Response to Multiple Cytokines. Journal of Experimental Medicine, 1998, 187, 1893-1902.	4.2	140
155	Genetic Predispositions and Childhood Cancer. Environmental Health Perspectives, 1998, 106, 801.	2.8	1
156	Mutations of the NF1 Gene in Children With Juvenile Myelomonocytic Leukemia Without Clinical Evidence of Neurofibromatosis, Type 1. Blood, 1998, 92, 267-272.	0.6	190
157	Homozygous Inactivation of theNF1Gene in Bone Marrow Cells from Children with Neurofibromatosis Type 1 and Malignant Myeloid Disorders. New England Journal of Medicine, 1997, 336, 1713-1720.	13.9	285
158	Role of the NF1 Gene in Leukemogenesis and Myeloid Growth Control. Journal of Pediatric Hematology/Oncology, 1997, 19, 551-554.	0.3	14
159	Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1., 1997, 79, 1438-1446.		78
160	Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1., 1997, 79, 1438.		3
161	Juvenile myelomonocytic leukemia: molecular understanding and prospects for therapy. Trends in Molecular Medicine, 1996, 2, 468-475.	2.6	79
162	Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genetics, 1996, 12, 144-148.	9.4	555

#	ARTICLE	IF	CITATIONS
163	Biochemical Characterization of a Novel KRAS Insertion Mutation from a Human Leukemia. Journal of Biological Chemistry, 1996, 271, 32491-32494.	1.6	54
164	The Ras signaling pathway and the molecular basis of myeloid leukemogenesis. Current Opinion in Hematology, 1995, 2, 305-308.	1.2	27
165	Molecular analysis at theNF1 locus in astrocytic brain tumors. Cancer, 1995, 76, 674-677.	2.0	12
166	Molecular evidence that childhood monosomy 7 syndrome is distinct from juvenile chronic myelogenous leukemia and other childhood myeloproliferative disorders. Genes Chromosomes and Cancer, 1995, 12, 50-57.	1.5	24
167	Recombinant Human Erythropoietin in Neonatal Anemia. Clinics in Perinatology, 1995, 22, 627-640.	0.8	23
168	Loss of The Normal NF1 Allele from the Bone Marrow of Children with Type 1 Neurofibromatosis and Malignant Myeloid Disorders. New England Journal of Medicine, 1994, 330, 597-601.	13.9	423
169	Do terminal deletions of 11q23 exist? Identification of undetected translocations with fluorescence in situ hybridization. Genes Chromosomes and Cancer, 1993, 7, 204-208.	1.5	37
170	Recombinant Erythropoietin in Anemia of Prematurity: Five Years Later. Pediatrics, 1993, 92, 614-617.	1.0	14
171	Enhancement of erythropoiesis by recombinant human erythropoietin in low birth weight infants: A pilot study. Journal of Pediatrics, 1992, 120, 586-592.	0.9	79
172	Recombinant human erythropoietin in the anemia of prematurity: Results of a placebo-controlled pilot study. Journal of Pediatrics, 1991, 118, 949-955.	0.9	132
173	Age-Related Differences in Erythropoietic Response to Recombinant Human Erythropoietin: Comparison in Adult and Infant Rhesus Monkeys. Pediatric Research, 1990, 28, 567-571.	1.1	31
174	Recombinant Erythopoietin in Pediatrics: A Clinical Perspective. Pediatric Annals, 1990, 19, 197-206.	0.3	10
175	Rationale for Using Recombinant Human Erythropoietin to Treat the Anemia of Prematurity. Contributions To Nephrology, 1989, 76, 324-329.	1.1	1
176	Circulating Erythroid Progenitors in the Anemia of Prematurity. New England Journal of Medicine, 1987, 317, 728-733.	13.9	117
177	Heritable predispositions to childhood hematologic malignancies. , 0, , 362-388.		2