
Marco P Soares Dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9239889/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Electromagnetic energy harvesting using magnetic levitation architectures: A review. Applied Energy, 2020, 260, 114191.	10.1	132
2	Graphene-based materials and structures for energy harvesting with fluids – A review. Materials Today, 2018, 21, 1019-1041.	14.2	81
3	Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Scientific Reports, 2016, 6, 18579.	3.3	79
4	Natural and Eco-Friendly Materials for Triboelectric Energy Harvesting. Nano-Micro Letters, 2020, 12, 42.	27.0	76
5	Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nano-Micro Letters, 2021, 13, 199.	27.0	59
6	Instrumented hip implants: Electric supply systems. Journal of Biomechanics, 2013, 46, 2561-2571.	2.1	33
7	Novel intelligent real-time position tracking system using FPGA and fuzzy logic. ISA Transactions, 2014, 53, 402-414.	5.7	31
8	New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Scientific Reports, 2016, 6, 30231.	3.3	28
9	Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Scientific Reports, 2019, 9, 5001.	3.3	26
10	Active orthopaedic implants: Towards optimality. Journal of the Franklin Institute, 2015, 352, 813-834.	3.4	22
11	Power management architecture for smart hip prostheses comprising multiple energy harvesting systems. Sensors and Actuators A: Physical, 2013, 202, 183-192.	4.1	21
12	Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Review of Medical Devices, 2014, 11, 617-635.	2.8	21
13	Instrumented knee joint implants: innovations and promising concepts. Expert Review of Medical Devices, 2015, 12, 571-584.	2.8	21
14	Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Scientific Reports, 2021, 11, 3449.	3.3	18
15	Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. Npj Regenerative Medicine, 2021, 6, 80.	5.2	15
16	Altering the Course of Technologies to Monitor Loosening States of Endoprosthetic Implants. Sensors, 2020, 20, 104.	3.8	14
17	Instrumented electromagnetic generator: Optimized performance by automatic self-adaptation of the generator structure. Mechanical Systems and Signal Processing, 2022, 171, 108898.	8.0	13
18	Novel magnetic stimulation methodology for low-current implantable medical devices. Medical Engineering and Physics, 2019, 73, 77-84.	1.7	9

#	Article	IF	CITATIONS
19	Multi-purpose and Multi-source Energy Management System for Biomedical Implants. Procedia Engineering, 2012, 47, 722-725.	1.2	8
20	Multiscale Sensing of Bone-Implant Loosening for Multifunctional Smart Bone Implants: Using Capacitive Technologies for Precision Controllability. Sensors, 2022, 22, 2531.	3.8	8
21	Multifunctional Smart Bone Implants: Fiction or Future?—A New Perspective. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6
22	Nonlinear Modeling of Vibrational Energy Harvesters for Smart Prostheses. Procedia Engineering, 2012, 47, 1089-1092.	1.2	5
23	Multi-source Harvesting Systems for Electric Energy Generation on Smart Hip Prostheses. Communications in Computer and Information Science, 2013, , 80-96.	0.5	5
24	Predictions of Birmingham hip resurfacing implant offset - In vitro and numerical models. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 352-363.	1.6	4
25	Piezoelectricity in Self-Assembled Peptides: A New Way towards Electricity Generation at Nanoscale. , 2020, , .		2
26	Towards Self-Adaptability of Instrumented Electromagnetic Energy Harvesters. Machines, 2022, 10, 414.	2.2	2
27	Improvement on control performance using FPGAs over software-based platforms. , 2012, , .		1