Pradip Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9239755/publications.pdf

Version: 2024-02-01

	516681	477281
1,059	16	29
citations	h-index	g-index
62	60	1240
63	63	1340
docs citations	times ranked	citing authors
	citations 63	1,059 16 citations h-index 63 63

#	Article	IF	CITATIONS
1	Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors and Actuators B: Chemical, 2013, 183, 25-33.	7.8	159
2	In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochimica Acta, 2019, 302, 327-337.	5.2	79
3	Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of processable polyaniline. Thin Solid Films, 2009, 517, 3770-3775.	1.8	52
4	Doping effect of carboxylic acid group functionalized multi-walled carbon nanotube on polyaniline. Composites Part B: Engineering, 2011, 42, 1641-1647.	12.0	52
5	Three-dimensional NiCo ₂ O ₄ /NiCo ₂ S ₄ hybrid nanostructure on Ni-foam as a high-performance supercapacitor electrode. RSC Advances, 2016, 6, 95760-95767.	3. 6	46
6	Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material. Sensors and Actuators B: Chemical, 2009, 140, 525-531.	7.8	41
7	A novel route for the synthesis of processable conducting poly(m-aminophenol). Materials Chemistry and Physics, 2008, 111, 59-64.	4.0	38
8	Facile synthesis of flower-like morphology Cu _{0.27} Co _{2.73} O ₄ for a high-performance supercapattery with extraordinary cycling stability. Chemical Communications, 2018, 54, 12400-12403.	4.1	37
9	Poly(m-aminophenol)/functionalized multi-walled carbon nanotube nanocomposite based alcohol sensors. Sensors and Actuators B: Chemical, 2015, 219, 199-208.	7.8	35
10	Synthesis of poly(<i>>o</i> -phenylenediamine) nanofiber with novel structure and properties. Polymers for Advanced Technologies, 2017, 28, 797-804.	3.2	34
11	Structure and properties of conducting poly(o-phenylenediamine) synthesized in different inorganic acid medium. Macromolecular Research, 2016, 24, 342-349.	2.4	28
12	Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polymer-Plastics Technology and Materials, 2020, 59, 1-62.	1.3	26
13	Induced doping by sodium ion in poly(m-aminophenol) through the functional groups. Synthetic Metals, 2010, 160, 1524-1529.	3.9	23
14	Electrical and Dielectric Properties of Polyaniline Doped with Carboxylâ€Functionalized Multiwalled Carbon Nanotube. Advances in Polymer Technology, 2013, 32, .	1.7	20
15	Polyaniline/Silver Nanocomposite Based Acetone Vapour Sensor. Sensor Letters, 2009, 7, 592-598.	0.4	20
16	Influence of structure of poly(o-phenylenediamine) on the doping ability and conducting property. lonics, 2017, 23, 937-947.	2.4	18
17	Influence of pH of the Reaction Medium on the Structure and Property of Conducting Poly(o-Phenylenediamine). Materials Today: Proceedings, 2015, 2, 1301-1308.	1.8	16
18	Synthesis of sodium cholate mediated rod-like polypyrrole-silver nanocomposite for selective sensing of acetone vapor. Nano Structures Nano Objects, 2020, 21, 100419.	3 . 5	16

#	Article	IF	CITATIONS
19	Ammonia sensing by hydrochloric acid doped poly(m-aminophenol)–silver nanocomposite. Journal of Materials Science, 2011, 46, 2905-2913.	3.7	15
20	Silver nanoparticles to improve electron transfer at interfaces of gold electrodes modified by biotin or avidin. Journal of Electroanalytical Chemistry, 2013, 692, 17-25.	3.8	14
21	Synthesis, characterization, thermal, dynamic mechanical, and dielectric studies of Ba _{0.7} Sr _{0.3} TiO ₃ /polystyrene composites. Polymer Composites, 2018, 39, E1714.	4.6	14
22	Hybrid NiCo ₂ O ₄ â€NiCo ₂ S ₄ Nanoflakes as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemistrySelect, 2018, 3, 2315-2320.	1.5	13
23	Effect of LiCl as an additive in the polymerization reaction of aniline and its influence on the structural and electrical property of polyaniline. Reactive and Functional Polymers, 2008, 68, 1103-1112.	4.1	11
24	Doping of processable conducting poly(<i>m</i> â€aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 2011, 22, 1060-1066.	3.2	11
25	Isomeric Effects on Structures and Properties of Polyaminophenols Synthesized in Basic Medium. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 282-290.	2.2	10
26	Na-cholate micelle mediated synthesis of polypyrrole nanoribbons for ethanol sensing. Journal of Environmental Chemical Engineering, 2020, 8, 104249.	6.7	10
27	Influence of dielectric constant of polymerization medium on processability and ammonia gas sensing properties of polyaniline. Bulletin of Materials Science, 2011, 34, 261-270.	1.7	9
28	Core-shell functionalized MWCNT/poly(<i>m</i> -aminophenol) nanocomposite with large dielectric permittivity and low dielectric loss. Polymers for Advanced Technologies, 2016, 27, 1596-1603.	3.2	9
29	Sensing of ethanol and other alcohol contaminated ethanol by conducting functional poly(o-phenylenediamine). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 256, 114541.	3.5	9
30	Optimization for the Chemical Synthesis of Conducting Poly (m-aminophenol) in HCl using Ammonium Persulfate. High Performance Polymers, 2010, 22, 428-441.	1.8	8
31	Ultrasensitive Electrochemical Sensing of Biotin-Avidin Interaction on Gold Electrode Bio-Conjugated With Silver Nanoparticles. IEEE Sensors Journal, 2021, 21, 10400-10408.	4.7	8
32	Effect on Structure, Processability, and Conductivity of Poly(<i>m</i> -aminophenol) of the Initial Acidity/Basicity of the Polymerization Medium. Journal of Macromolecular Science - Physics, 2010, 49, 669-679.	1.0	7
33	Selective Sensing of Methanol by Poly(m-aminophenol)/Copper Nanocomposite. Electronic Materials Letters, 2018, 14, 161-172.	2.2	7
34	Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups. Advances in Materials Research (South Korea), 2014, 3, 117-128.	0.6	7
35	Doping of the Processable Conducting Poly(m-Aminophenol) with Inorganic Acids. Journal of Macromolecular Science - Physics, 2011, 50, 1822-1833.	1.0	6
36	Synthesis of processable conducting poly(m-aminophenol) having structure like keto derivative of polyaniline. Polymer Science - Series B, 2015, 57, 159-166.	0.8	6

#	Article	IF	CITATIONS
37	Ammonia-Assisted Growth of CoSn(OH) < sub > 6 < /sub > Nanostructures and Their Electrochemical Performances for Supercapacitor. Journal of Nanoscience and Nanotechnology, 2019, 19, 2755-2761.	0.9	6
38	Electrochemical sensing by a covalently bonded biotin–avidin couple on a silver nanoparticle modified gold electrode. Instrumentation Science and Technology, 2021, 49, 106-124.	1.8	6
39	Conjugated Polymer Nanocomposites-Based Chemical Sensors. , 2015, , 619-686.		5
40	Thermal, mechanical, and dielectric properties of low loss <scp>PbZr₀</scp> _. <scp>₃Ti₀</scp> _. <scp>_{composites prepared by hotâ€press method. Polymer Composites, 2021, 42, 1420-1428.}</scp>	ub ⋊7.6 /sub	∍O≅sub>3
41	Synthesis of stable aqueous colloid of functionalized silver nanorod. Functional Materials Letters, 2019, 12, 1950076.	1.2	4
42	Electrochemical sensing of biotin-avidin interaction on gold electrode modified by silver nanoparticles through covalent co-assembling. Sensors International, 2022, 3, 100159.	8.4	4
43	Electrochemical sensing of serotonin by silver decorated polypyrrole nanoribbon based electrode synthesized by sodium cholate as soft template. Materials Today Communications, 2022, 31, 103361.	1.9	4
44	Interaction of multi-walled carbon nanotube with poly(m-aminophenol) in their processable conducting nanocomposite. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2044-2052.	1.8	3
45	Synthesis, Characteristics and Aliphatic Alcohol Sensing Behavior of Poly(<i>m–</i> aminophenol)/Sulfonic Acidâ€Functionalized Multiâ€Walled Carbon Nanotube Composite. ChemistrySelect, 2017, 2, 3917-3924.	1.5	3
46	Selective Sensing of Ethanol by Poly(m-aminophenol)/Amine Groups Functionalized Multi-Walled Carbon Nanotube Composite. Sensor Letters, 2017, 15, 448-456.	0.4	3
47	Deposition of Tin Oxide Thin Films by Successive Ionic Layer Adsorption Reaction Method and Its Characterization. Journal of Nanoscience and Nanotechnology, 2018, 18, 2569-2575.	0.9	3
48	Anticorrosion and antiwear., 2019,, 195-236.		3
49	Nanomaterials Based Sensors for Air Pollution Control. Environmental Chemistry for A Sustainable World, 2020, , 349-403.	0.5	3
50	Poly(m-aminophenol)/Silver Nanorod Composite Based Paper Strip for Chemo-Resistive Picric Acid Sensing. Sensor Letters, 2019, 17, 219-227.	0.4	1
51	Chemiresistive sensing of arsenic ion in water by thin film of poly(m-aminophenol) nano-fiber. Journal of Environmental Chemical Engineering, 2020, 8, 104536.	6.7	1
52	Easy synthesis of 4-quinonimine functionalized gold nanoparticles in stable aqueous colloidal state. Particulate Science and Technology, 0, , 1-7.	2.1	1
53	The Role of Polyvinyl Alcohol in One-Step Chemical Synthesis of Water Based Copper Nanofluid. Nanoscience and Nanotechnology Letters, 2013, 5, 937-940.	0.4	O