Lintao Bu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/923971/publications.pdf

Version: 2024-02-01

687363 888059 17 545 13 17 citations h-index g-index papers 17 17 17 855 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Advances in Multiscale Modeling of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2020, 8, 3512-3531.	6.7	79
2	The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds. Journal of Physical Chemistry B, 2009, 113, 10994-11002.	2.6	75
3	Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods. Journal of Biological Chemistry, 2011, 286, 18161-18169.	3.4	69
4	Product Binding Varies Dramatically between Processive and Nonprocessive Cellulase Enzymes. Journal of Biological Chemistry, 2012, 287, 24807-24813.	3.4	57
5	The molecular origins of twist in cellulose I-beta. Carbohydrate Polymers, 2015, 125, 146-152.	10.2	50
6	Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite. Catalysis Today, 2018, 312, 73-81.	4.4	44
7	Enabling microbial syringol conversion through structure-guided protein engineering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13970-13976.	7.1	41
8	Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes. Jacs Au, 2021, 1, 252-261.	7.9	20
9	Cell wall targeted <i>in planta </i> iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. Plant Biotechnology Journal, 2016, 14, 1998-2009.	8.3	19
10	Furan Production from Glycoaldehyde over HZSM-5. ACS Sustainable Chemistry and Engineering, 2016, 4, 2615-2623.	6.7	19
11	Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules. Journal of Physical Chemistry A, 2017, 121, 5475-5486.	2.5	16
12	Oxidation and pyrolysis of methyl propyl ether. International Journal of Chemical Kinetics, 2021, 53, 915-938.	1.6	15
13	Carbocation Stability in H-ZSM5 at High Temperature. Journal of Physical Chemistry A, 2015, 119, 11397-11405.	2.5	14
14	Theoretical Determination of Size Effects in Zeolite-Catalyzed Alcohol Dehydration. Catalysts, 2019, 9, 700.	3.5	11
15	Strategies to reduce endâ€product inhibition in family 48 glycoside hydrolases. Proteins: Structure, Function and Bioinformatics, 2016, 84, 295-304.	2.6	10
16	Meso-Scale Modeling of Polysaccharides in Plant Cell Walls: An Application to Translation of CBMs on the Cellulose Surface. ACS Symposium Series, 2010, , 99-117.	0.5	3
17	Pretreatment with Sodium Methyl Mercaptide Increases Carbohydrate Yield during Kraft Pulping. ACS Sustainable Chemistry and Engineering, 2021, 9, 11571-11580.	6.7	3