Dina Robaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9239264/publications.pdf

Version: 2024-02-01

67	1,751	23	39
papers	citations	h-index	g-index
73	73	73	2583
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals, 2022, 15, 80.	3.8	12
2	Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. European Journal of Medicinal Chemistry, 2022, 234, 114272.	5.5	15
3	Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. International Journal of Molecular Sciences, 2022, 23, 369.	4.1	28
4	Docking, Binding Free Energy Calculations and In Vitro Characterization of Pyrazine Linked 2-Aminobenzamides as Novel Class I Histone Deacetylase (HDAC) Inhibitors. Molecules, 2022, 27, 2526.	3.8	5
5	First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement**. ChemBioChem, 2022, 23, .	2.6	9
6	Design, Synthesis and Biological Characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with Anti-Neuroblastoma Activity. International Journal of Molecular Sciences, 2022, 23, 7535.	4.1	15
7	Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem, 2021, 16, 1336-1359.	3.2	54
8	Binding Free Energy (BFE) Calculations and Quantitative Structure–Activity Relationship (QSAR) Analysis of Schistosoma mansoni Histone Deacetylase 8 (smHDAC8) Inhibitors. Molecules, 2021, 26, 2584.	3.8	10
9	Structure-Based Design, Docking and Binding Free Energy Calculations of A366 Derivatives as Spindlin1 Inhibitors. International Journal of Molecular Sciences, 2021, 22, 5910.	4.1	5
10	Exploring aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction: an in silico study. Journal of Computer-Aided Molecular Design, 2021, 35, 695-706.	2.9	1
11	Evaluation of \hat{l}^3 -carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 46, 116355.	3.0	5
12	Synthesis, structure-activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. European Journal of Medicinal Chemistry, 2021, 225, 113745.	5.5	7
13	HaloTagâ€Targeted Sirtuinâ€Rearranging Ligand (SirReal) for the Development of Proteolysisâ€Targeting Chimeras (PROTACs) against the Lysine Deacetylase Sirtuin 2 (Sirt2)**. ChemBioChem, 2020, 21, 3371-3376.	2.6	13
14	Proteolysis targeting chimeras (PROTACs) for epigenetics research. Current Opinion in Chemical Biology, 2020, 57, 8-16.	6.1	46
15	Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2020, 14, e0008332.	3.0	11
16	Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds. European Journal of Medicinal Chemistry, 2020, 190, 112138.	5.5	7
17	Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1. European Journal of Medicinal Chemistry, 2020, 200, 112338.	5.5	17
18	Case studies on computer-based identification of natural products as lead molecules. ChemistrySelect, 2020, 5, .	1.5	1

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 14, e0008332.		O
20	Title is missing!. , 2020, 14, e0008332.		0
21	Title is missing!. , 2020, 14, e0008332.		O
22	Title is missing!. , 2020, 14, e0008332.		0
23	The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases. ACS Chemical Biology, 2019, 14, 1737-1750.	3.4	22
24	Impact of hydroxy moieties at the benzo [7] annulene ring system of GluN2B ligands: Design, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2019, 27, 115146.	3.0	3
25	Preclinical Evaluation of Benzazepine-Based PET Radioligands (⟨i⟩R⟨/i⟩)- and (⟨i⟩S⟨/i⟩)-⟨sup⟩11⟨/sup⟩C-Me-NB1 Reveals Distinct Enantiomeric Binding Patterns and a Tightrope Walk Between GluN2B- and Ïf⟨sub⟩1⟨/sub⟩-Receptor–Targeted PET Imaging. Journal of Nuclear Medicine, 2019, 60. 1167-1173.	5.0	30
26	Structure-Based Design of Epigenetic Inhibitors. Topics in Medicinal Chemistry, 2019, , 455-486.	0.8	0
27	Synthesis and Biological Investigation of Phenothiazine-Based Benzhydroxamic Acids as Selective Histone Deacetylase 6 Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 1138-1166.	6.4	75
28	Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 2018, 144, 672-681.	5 . 5	16
29	Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 189-193.	3.4	20
30	Epigenetic small molecule modulators of histone and DNA methylation. Current Opinion in Chemical Biology, 2018, 45, 73-85.	6.1	53
31	The Current State of NAD ⁺ â€Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Medicinal Research Reviews, 2018, 38, 147-200.	10.5	88
32	Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). Journal of Medicinal Chemistry, 2018, 61, 482-491.	6.4	204
33	Structure-activity studies on N -Substituted tranylcypromine derivatives lead to selective inhibitors of lysine specific demethylase 1 (LSD1) and potent inducers of leukemic cell differentiation. European Journal of Medicinal Chemistry, 2018, 144, 52-67.	5 . 5	30
34	Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural and Functional Determinants. Journal of Medicinal Chemistry, 2018, 61, 10000-10016.	6.4	81
35	Synthesis, Crystallization Studies, and in vitro Characterization of Cinnamic Acid Derivatives as <i>Sm</i> HDAC8 Inhibitors for the Treatment of Schistosomiasis. ChemMedChem, 2018, 13, 1517-1529.	3.2	21
36	Design of selective histone deacetylase inhibitors: rethinking classical pharmacophore. Future Medicinal Chemistry, 2018, 10, 1537-1540.	2.3	14

#	Article	IF	Citations
37	Opening the Selectivity Pocket in the Human Lysine Deacetylase Sirtuin2 $\hat{a}\in$ New Opportunities, New Questions. Chemical Record, 2018, 18, 1701-1707.	5.8	10
38	Pharmacogenetic Aspects of the Interaction of AT1 Receptor Antagonists With ATP-Binding Cassette Transporter ABCG2. Frontiers in Pharmacology, 2018, 9, 463.	3.5	5
39	Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. Methods in Molecular Biology, 2018, 1824, 347-370.	0.9	5
40	A Novel Class of Schistosoma mansoni Histone Deacetylase 8 (HDAC8) Inhibitors Identified by Structure-Based Virtual Screening and In Vitro Testing. Molecules, 2018, 23, 566.	3.8	37
41	Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. ELife, 2018, 7, .	6.0	71
42	Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. Journal of Medicinal Chemistry, 2017, 60, 4780-4804.	6.4	71
43	Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases. Infection, Genetics and Evolution, 2017, 53, 175-188.	2.3	20
44	Photochromic histone deacetylase inhibitors based on dithienylethenes and fulgimides. Organic and Biomolecular Chemistry, 2017, 15, 4882-4896.	2.8	23
45	Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. European Journal of Medicinal Chemistry, 2017, 127, 22-40.	5.5	13
46	Design, Synthesis, Pharmacological Evaluation and Docking Studies of GluN2Bâ€Selective NMDA Receptor Antagonists with a Benzo[7]annulenâ€₹â€amine Scaffold. ChemMedChem, 2017, 12, 1212-1222.	3.2	25
47	Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. Journal of Medicinal Chemistry, 2017, 60, 10188-10204.	6.4	56
48	Muscle Carnitine Palmitoyltransferase II Deficiency: A Review of Enzymatic Controversy and Clinical Features. International Journal of Molecular Sciences, 2017, 18, 82.	4.1	29
49	Epigenetic Readers Interpreting the Lysine Methylome—Biological Roles and Drug Discovery. , 2016, , 273-304.		0
50	Stereospecific capillary electrophoresis assays using pentapeptide substrates for the study of <i>Aspergillus nidulans </i> methionine sulfoxide reductase A and mutant enzymes. Electrophoresis, 2016, 37, 2083-2090.	2.4	4
51	Identification and Structure–Activity Relationship Studies of Smallâ€Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. ChemMedChem, 2016, 11, 2327-2338.	3.2	26
52	Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from <i>Schistosoma mansoni</i> for the Treatment of Schistosomiasis. Journal of Medicinal Chemistry, 2016, 59, 2423-2435.	6.4	107
53	KATching-Up on Small Molecule Modulators of Lysine Acetyltransferases. Journal of Medicinal Chemistry, 2016, 59, 1249-1270.	6.4	64
54	Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Future Medicinal Chemistry, 2016, 8, 1553-1571.	2.3	16

#	Article	IF	CITATION
55	Discovery of Histone Demethylase Inhibitors. , 2015, , 397-424.		3
56	Analysis of the Resistance of Hepatitis C Virus NS5B Polymerase Inhibitors via Docking and Molecular Dynamics Simulation. Molecular Informatics, 2015, 34, 78-83.	2.5	3
57	Enantiomerically Pure 2-Methyltetrahydro-3-benzazepin-1-ols Selectively Blocking GluN2B Subunit Containing <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors. Journal of Medicinal Chemistry, 2015, 58, 6293-6305.	6.4	34
58	Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors. Journal of Molecular Graphics and Modelling, 2015, 62, 342-361.	2.4	39
59	Evaluation of Homobivalent Carbolines as Designed Multiple Ligands for the Treatment of Neurodegenerative Disorders. Journal of Medicinal Chemistry, 2015, 58, 6710-6715.	6.4	29
60	Benzo[7]annulene-based GluN2B selective NMDA receptor antagonists: Surprising effect of a nitro group in 2-position. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5748-5751.	2.2	15
61	Pyrido- and benzisothiazolones as inhibitors of histone acetyltransferases (HATs). MedChemComm, 2014, 5, 1856-1862.	3.4	16
62	Mind the Methyl: Methyllysine Binding Proteins in Epigenetic Regulation. ChemMedChem, 2014, 9, 466-483.	3.2	40
63	Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry, 2012, 51, 5463-5475.	2.5	12
64	Chiral Indolo[3,2-f][3]benzazecine-Type Dopamine Receptor Antagonists: Synthesis and Activity of Racemic and Enantiopure Derivatives. Journal of Medicinal Chemistry, 2011, 54, 7422-7426.	6.4	17
65	A Novel Nonâ€phenolic Dibenzazecine Derivative with Nanomolar Affinities for Dopamine Receptors. Chemistry and Biodiversity, 2011, 8, 431-439.	2.1	5
66	Residues at the Indoleâ€∢i>NH of LE300 Modulate Affinities and Selectivities for Dopamine Receptors. Archiv Der Pharmazie, 2011, 344, 28-36.	4.1	12
67	Dopamine Receptor Ligands. Part 18: Modification of the Structural Skeleton of Indolobenzazecine-Type Dopamine Receptor Antagonists. Journal of Medicinal Chemistry, 2010, 53, 2646-2650.	6.4	23