Dongxiao Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/923852/dongxiao-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,856 82 270 49 h-index g-index citations papers 6.84 10,221 300 4.7 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
270	Predicting permeability from 3D rock images based on CNN with physical information. <i>Journal of Hydrology</i> , 2022 , 606, 127473	6	1
269	Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants. <i>Renewable Energy</i> , 2022 , 185, 1062-1077	8.1	2
268	Constructing sub-scale surrogate model for proppant settling in inclined fractures from simulation data with multi-fidelity neural network. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 210, 110051	1 ^{4·4}	
267	Carbon Capture, Utilization & Storage: A General Overview 2022 , 61-107		Ο
266	Experimental study on multiphase flow in 3D-printed heterogeneous, filled vugs. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109497	4.4	
265	Efficient well placement optimization based on theory-guided convolutional neural network. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109545	4.4	2
264	Elastic Characterization of Shale at Microscale: A Comparison between Modulus Mapping, PeakForce Quantitative Nanomechanical Mapping, and Contact Resonance Method. <i>SPE Journal</i> , 2022 , 1-22	3.1	
263	A statistical thermodynamics-based equation of state and phase equilibrium calculation for confined hydrocarbons in shale reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 102, 104579	4.6	0
262	An adaptive deep learning framework for day-ahead forecasting of photovoltaic power generation. <i>Sustainable Energy Technologies and Assessments</i> , 2022 , 52, 102326	4.7	1
261	Deep-learning of parametric partial differential equations from sparse and noisy data. <i>Physics of Fluids</i> , 2021 , 33, 037132	4.4	7
260	Development of 3-D Curved Fracture Swarms in Shale Rock Driven by Rapid Fluid Pressure Buildup: Insights From Numerical Modeling. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL092638	4.9	2
259	Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. <i>Energy</i> , 2021 , 225, 120240	7.9	25
258	DL-PDE: Deep-Learning Based Data-Driven Discovery of Partial Differential Equations from Discrete and Noisy Data. <i>Communications in Computational Physics</i> , 2021 , 29, 698-728	2.4	3
257	Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow. <i>Journal of Computational Physics</i> , 2021 , 436, 110318	4.1	7
256	Direct numerical simulation of proppant transport in hydraulic fractures with the immersed boundary method and multi-sphere modeling. <i>Applied Mathematical Modelling</i> , 2021 , 91, 590-613	4.5	5
255	Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory. <i>Advances in Applied Energy</i> , 2021 , 1, 100004		15
254	Efficient uncertainty quantification for dynamic subsurface flow with surrogate by Theory-guided Neural Network. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2021 , 373, 113492	5.7	17

(2020-2021)

253	Deep-Learning-Based Inverse Modeling Approaches: A Subsurface Flow Example. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2020JB020549	3.6	11	
252	Simulating particle settling in inclined narrow channels with the unresolved CFD-DEM method. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	5	
251	Estimation of Macrodispersivity in Bounded Formations by Circulant Embedding and Analysis of Variance. <i>Water Resources Research</i> , 2021 , 57, e2020WR029385	5.4	1	
250	Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network. <i>Advances in Water Resources</i> , 2021 , 153, 103941	4.7	3	
249	Theory-guided full convolutional neural network: An efficient surrogate model for inverse problems in subsurface contaminant transport. <i>Advances in Water Resources</i> , 2021 , 157, 104051	4.7	2	
248	Development and evaluation of a novel fracture diverting agent for high temperature reservoirs. Journal of Natural Gas Science and Engineering, 2021, 93, 104074	4.6	3	
247	Experimental investigation of water sensitivity effects on microscale mechanical behavior of shale. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2021 , 145, 104837	6	3	
246	Lithology identification from well-log curves via neural networks with additional geologic constraint. <i>Geophysics</i> , 2021 , 86, IM85-IM100	3.1	7	
245	Deep learning of dynamic subsurface flow via theory-guided generative adversarial network. <i>Journal of Hydrology</i> , 2021 , 601, 126626	6	3	
244	Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data. <i>Journal of Computational Physics</i> , 2021 , 445, 110592	4.1	1	
243	Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method. <i>Journal of Computational Physics</i> , 2021 , 445, 110624	4.1	5	
242	Theory-guided Auto-Encoder for surrogate construction and inverse modeling. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2021 , 385, 114037	5.7	3	
241	Fluid and heat flow in enhanced geothermal systems considering fracture geometrical and topological complexities: An extended embedded discrete fracture model. <i>Renewable Energy</i> , 2021 , 179, 163-178	8.1	4	
240	Deep Learning of Two-Phase Flow in Porous Media via Theory-Guided Neural Networks. <i>SPE Journal</i> , 2021 , 1-19	3.1	O	
239	Physics-constrained indirect supervised learning. <i>Theoretical and Applied Mechanics Letters</i> , 2020 , 10, 155-160	1.8	2	
238	Experimental study on multiphase flow in fracture-vug medium using 3D printing technology and visualization techniques. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 193, 107394	4.4	11	
237	Contrasting phase field method and pairwise force smoothed particle hydrodynamics method in simulating multiphase flow through fracture-vug medium. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 81, 103424	4.6	2	
236	Dynamic microscale crack propagation in shale. <i>Engineering Fracture Mechanics</i> , 2020 , 228, 106906	4.2	10	

235	A novel targeted plugging and fracture-adaptable gel used as a diverting agent in fracturing. <i>Energy Science and Engineering</i> , 2020 , 8, 116-133	3.4	5
234	Three-Dimensional Hydrochemical Model for Dissolutional Growth of Fractures in Karst Aquifers. <i>Water Resources Research</i> , 2020 , 56, e2019WR025631	5.4	10
233	Physics-Constrained Deep Learning of Geomechanical Logs. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2020 , 58, 5932-5943	8.1	17
232	Deep learning of subsurface flow via theory-guided neural network. <i>Journal of Hydrology</i> , 2020 , 584, 124700	6	62
231	Efficient analytical upscaling method for elliptic equations in three-dimensional heterogeneous anisotropic media. <i>Journal of Hydrology</i> , 2020 , 583, 124560	6	3
230	DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm. <i>Journal of Computational Physics</i> , 2020 , 418, 109584	4.1	15
229	Nanopore structure and nanomechanical properties of organic-rich terrestrial shale: An insight into technical issues for hydrocarbon production. <i>Nano Energy</i> , 2020 , 69, 104426	17.1	12
228	A radial differential pressure decay method with micro-plug samples for determining the apparent permeability of shale matrix. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 74, 103126	4.6	3
227	Comprehensive study and comparison of equilibrium and kinetic models in simulation of hydrate reaction in porous media. <i>Journal of Computational Physics</i> , 2020 , 404, 109094	4.1	6
226	A mechanistic model for permeability in deformable gas hydrate-bearing sediments. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 83, 103554	4.6	3
225	Well Log Generation via Ensemble Long Short-Term Memory (EnLSTM) Network. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087685	4.9	10
224	Hydromechanical Modeling of Nonplanar Three-Dimensional Fracture Propagation Using an Iteratively Coupled Approach. <i>Journal of Geophysical Research: Solid Earth</i> , 2020 , 125, e2020JB020115	3.6	6
223	Influence of Geochemical Features on the Mechanical Properties of Organic Matter in Shale. Journal of Geophysical Research: Solid Earth, 2020 , 125, e2020JB019809	3.6	4
222	Efficient uncertainty quantification for permeability of three-dimensional porous media through image analysis and pore-scale simulations. <i>Physical Review E</i> , 2020 , 102, 023308	2.4	3
221	Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks: A review. <i>International Journal of Coal Geology</i> , 2019 , 204, 1-17	5.5	64
220	A new analytical model for flow in acidized fractured-vuggy porous media. <i>Scientific Reports</i> , 2019 , 9, 8293	4.9	5
219	A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas. <i>Journal of Natural Gas Science and Engineering</i> , 2019 , 68, 102901	4.6	49
218	Identification of physical processes via combined data-driven and data-assimilation methods. <i>Journal of Computational Physics</i> , 2019 , 393, 337-350	4.1	16

(2018-2019)

217	An Integrated Approach for History Matching of Multiscale-Fracture Reservoirs. <i>SPE Journal</i> , 2019 , 24, 1508-1525	3.1	11	
216	A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Marine and Petroleum Geology, 2019 , 105, 284-292	4.7	27	
215	Analytical solution for upscaling hydraulic conductivity in anisotropic heterogeneous formations. <i>Advances in Water Resources</i> , 2019 , 128, 97-116	4.7	9	
214	Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs. <i>Applied Energy</i> , 2019 , 247, 40-59	10.7	47	
213	Efficient History Matching Using the Markov-Chain Monte Carlo Method by Means of the Transformed Adaptive Stochastic Collocation Method. <i>SPE Journal</i> , 2019 , 24, 1468-1489	3.1	10	
212	Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method. <i>Fuel</i> , 2019 , 245, 316-335	7.1	22	
211	Machine learning subsurface flow equations from data. <i>Computational Geosciences</i> , 2019 , 23, 895-910	2.7	15	
210	How Effective Is Carbon Dioxide as an Alternative Fracturing Fluid?. SPE Journal, 2019, 24, 857-876	3.1	26	
209	Multiscale Approach for Mechanical Characterization of Organic-Rich Shale and Its Application. <i>International Journal of Geomechanics</i> , 2019 , 19, 04018180	3.1	24	
208	Ensemble Neural Networks (ENN): A gradient-free stochastic method. <i>Neural Networks</i> , 2019 , 110, 170	-1,85	20	
207	Tuning Fractures With Dynamic Data. Water Resources Research, 2018, 54, 680-707	5.4	11	
206	A Fully Coupled Model for Hydraulic-Fracture Growth During Multiwell-Fracturing Treatments: Enhancing Fracture Complexity. <i>SPE Production and Operations</i> , 2018 , 33, 235-250	0.6	9	
205	Long-term viability of carbon sequestration in deep-sea sediments. Science Advances, 2018, 4, eaao658	814.3	31	
204	The effect of heterogeneity on hydraulic fracturing in shale. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 162, 292-308	4.4	19	
203	History Matching of Stimulated Reservoir Volume of Shale-Gas Reservoirs Using an Iterative Ensemble Smoother. <i>SPE Journal</i> , 2018 , 23, 346-366	3.1	10	
202	Study of adsorption behavior in shale reservoirs under high pressure. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 49, 275-285	4.6	22	
201	Synthetic well logs generation via Recurrent Neural Networks. <i>Petroleum Exploration and Development</i> , 2018 , 45, 629-639	4.5	71	
200	Generalized prism grid: a pillar-based unstructured grid for simulation of reservoirs with complicated geological geometries. <i>Computational Geosciences</i> , 2018 , 22, 1561-1581	2.7	3	

199	A Fully Coupled Model for Hydraulic Fracture Growth During Multi-Well Fracturing Treatments: Enhancing Fracture Complexity 2017 ,		3
198	An adsorbed gas estimation model for shale gas reservoirs via statistical learning. <i>Applied Energy</i> , 2017 , 197, 327-341	10.7	40
197	Reservoir characterization and production optimization using the ensemble-based optimization method and multi-layer capacitance-resistive models. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 156, 633-653	4.4	10
196	Nested sparse grid collocation method with delay and transformation for subsurface flow and transport problems. <i>Advances in Water Resources</i> , 2017 , 104, 158-173	4.7	6
195	A New Approach to the Modeling of Hydraulic-Fracturing Treatments in Naturally Fractured Reservoirs. <i>SPE Journal</i> , 2017 , 22, 1064-1081	3.1	32
194	Surrogate model based iterative ensemble smoother for subsurface flow data assimilation. <i>Advances in Water Resources</i> , 2017 , 100, 96-108	4.7	26
193	A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media. <i>Journal of Computational Physics</i> , 2017 , 330, 828-845	4.1	16
192	Where gas is produced from a shale formation: A simulation study. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 45, 860-870	4.6	3
191	Experimental investigation of the pore structure of triassic terrestrial shale in the Yanchang Formation, Ordos Basin, China. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 46, 436-450	4.6	13
190	Multiscale pore structure and its effect on gas transport in organic-rich shale. <i>Water Resources Research</i> , 2017 , 53, 5438-5450	5.4	58
189	Multiscale Approach to Mechanical Characterization of Shale 2017,		1
188	A New Approach to the Modeling of Hydraulic Fracturing Treatments in Naturally Fractured Reservoirs 2016 ,		3
187	A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 34, 64-84	4.6	45
186	Assessing surface heat fluxes in atmospheric reanalyses with a decade of data from the NOAA Kuroshio Extension Observatory. <i>Journal of Geophysical Research: Oceans</i> , 2016 , 121, 6874-6890	3.3	8
185	Probabilistic collocation method for strongly nonlinear problems: 3. Transform by time. <i>Water Resources Research</i> , 2016 , 52, 2366-2375	5.4	15
184	Mooring observations of equatorial currents in the upper 1000 m of the western Pacific Ocean during 2014. <i>Journal of Geophysical Research: Oceans</i> , 2016 , 121, 3730-3740	3.3	21
183	Recovery mechanisms and key issues in shale gas development. <i>Chinese Science Bulletin</i> , 2016 , 61, 62-7	1 2.9	3
182	Impact of Adsorption on Gas Transport in Nanopores. <i>Scientific Reports</i> , 2016 , 6, 23629	4.9	43

(2014-2016)

181	Direct Oil Recovery from Saturated Carbon Nanotube Sponges. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 12337-43	9.5	27	
180	Numerical simulation of proppant transport in hydraulic fracture with the upscaling CFD-DEM method. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 264-277	4.6	76	
179	Semiannually alternating exchange of intermediate waters east of the Philippines. <i>Geophysical Research Letters</i> , 2016 , 43, 7059-7065	4.9	11	
178	Data-worth analysis through probabilistic collocation-based Ensemble Kalman Filter. <i>Journal of Hydrology</i> , 2016 , 540, 488-503	6	26	
177	Constrained probabilistic collocation method for uncertainty quantification of geophysical models. <i>Computational Geosciences</i> , 2015 , 19, 311-326	2.7	5	
176	Benchmark problems for subsurface flow uncertainty quantification. <i>Journal of Hydrology</i> , 2015 , 531, 168-186	6	11	
175	A multi-continuum multiple flow mechanism simulator for unconventional oil and gas recovery. Journal of Natural Gas Science and Engineering, 2015 , 26, 652-669	4.6	35	
174	Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs. Journal of Unconventional Oil and Gas Resources, 2015 , 9, 18-30		30	
173	Lattice Boltzmann Simulation of Particle Motion in Binary Immiscible Fluids. <i>Communications in Computational Physics</i> , 2015 , 18, 757-786	2.4	19	
172	Assisted History Matching for Fractured Reservoirs by Use of Hough-Transform-Based Parameterization. <i>SPE Journal</i> , 2015 , 20, 942-961	3.1	17	
171	Data Assimilation for Strongly Nonlinear Problems by Transformed Ensemble Kalman Filter. <i>SPE Journal</i> , 2015 , 20, 202-221	3.1	11	
170	A Surrogate-based Adaptive Sampling Approach for History Matching and Uncertainty Quantification 2015 ,		5	
169	Efficient data-worth analysis for the selection of surveillance operation in a geologic CO2 sequestration system 2015 , 5, 513-529		2	
168	Jointly updating the mean size and spatial distribution of facies in reservoir history matching. <i>Computational Geosciences</i> , 2015 , 19, 727-746	2.7	8	
167	Environmental impacts of hydraulic fracturing in shale gas development in the United States. <i>Petroleum Exploration and Development</i> , 2015 , 42, 876-883	4.5	63	
166	Water flooding performance prediction by multi-layer capacitance-resistive models combined with the ensemble Kalman filter. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 127, 1-19	4.4	19	
165	History matching of statistically anisotropic fields using the Karhunen-Loeve expansion-based global parameterization technique. <i>Computational Geosciences</i> , 2014 , 18, 265-282	2.7	12	
164	An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling. <i>Journal of Computational Physics</i> , 2014 , 258, 752-772	4.1	24	

163	A multimodel data assimilation framework via the ensemble Kalman filter. <i>Water Resources Research</i> , 2014 , 50, 4197-4219	5.4	41
162	Multimodel Bayesian analysis of groundwater data worth. Water Resources Research, 2014 , 50, 8481-84	9 5 .4	32
161	Probabilistic collocation method for strongly nonlinear problems: 2. Transform by displacement. Water Resources Research, 2014 , 50, 8736-8759	5.4	17
160	Efficient and Accurate Global Sensitivity Analysis for Reservoir Simulations By Use of the Probabilistic Collocation Method. <i>SPE Journal</i> , 2014 , 19, 621-635	3.1	15
159	History Matching of Channelized Reservoirs With Vector-Based Level-Set Parameterization. <i>SPE Journal</i> , 2014 , 19, 514-529	3.1	19
158	Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean Dipole. <i>Geophysical Research Letters</i> , 2014 , 41, 7933-7941	4.9	17
157	Accelerating the iterative linear solver for reservoir simulation on multicore architectures 2014,		1
156	A backward automatic differentiation framework for reservoir simulation. <i>Computational Geosciences</i> , 2014 , 18, 1009-1022	2.7	23
155	History matching of facies distribution with varying mean lengths or different principle correlation orientations. <i>Journal of Petroleum Science and Engineering</i> , 2014 , 124, 275-292	4.4	7
154	Mechanisms for Geological Carbon Sequestration. <i>Procedia IUTAM</i> , 2014 , 10, 319-327		60
153	Stochastic representation and dimension reduction for non-Gaussian random fields: review and reflection. <i>Stochastic Environmental Research and Risk Assessment</i> , 2013 , 27, 1621-1635	3.5	16
152	Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations. <i>Journal of Climate</i> , 2013 , 26, 7187-7197	4.4	241
151	Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method. <i>Advances in Water Resources</i> , 2013 , 56, 49-60	4.7	62
150	Iodine in groundwater of the North China Plain: Spatial patterns and hydrogeochemical processes of enrichment. <i>Journal of Geochemical Exploration</i> , 2013 , 135, 40-53	3.8	36
149	A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter. <i>Water Resources Research</i> , 2013 , 49, 7350-7365	5.4	30
148	History matching of fracture distributions by ensemble Kalman filter combined with vector based level set parameterization. <i>Journal of Petroleum Science and Engineering</i> , 2013 , 108, 288-303	4.4	25
147	Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. <i>Environmental Science & Environmental S</i>	10.3	154
146	Probabilistic collocation method for strongly nonlinear problems: 1. Transform by location. <i>Water</i>	5.4	34

(2010-2013)

145	A Fully Coupled Multiphase Multicomponent Flow and Geomechanics Model for Enhanced Coalbed-Methane Recovery and CO2 Storage. <i>SPE Journal</i> , 2013 , 18, 448-467	3.1	17	
144	Automatic Estimation of Fracture Properties in Multi-Stage Fractured Shale Gas Horizontal Wells for Reservoir Modeling 2012 ,		4	
143	A sparse grid based Bayesian method for contaminant source identification. <i>Advances in Water Resources</i> , 2012 , 37, 1-9	4.7	68	
142	Tracking colloid transport in real pore structures: Comparisons with correlation equations and experimental observations. <i>Water Resources Research</i> , 2012 , 48,	5.4	9	
141	Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery. <i>International Journal of Greenhouse Gas Control</i> , 2012 , 8, 22-33	4.2	28	
140	Multiscale-finite-element-based ensemble Kalman filter for large-scale groundwater flow. <i>Journal of Hydrology</i> , 2012 , 468-469, 22-34	6	10	
139	Physical Response of the Tropical Bubtropical North Atlantic Ocean to Decadal Multidecadal Forcing by African Dust. <i>Journal of Climate</i> , 2012 , 25, 5817-5829	4.4	15	
138	Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. <i>Journal of Geophysical Research</i> , 2011 , 116,		36	
137	Optimization of the Net Present Value of Carbon Dioxide Sequestration and Enhanced Oil Recovery 2011 ,		18	
136	A Comparative Study of the Probabilistic-Collocation and Experimental-Design Methods for Petroleum-Reservoir Uncertainty Quantification. <i>SPE Journal</i> , 2011 , 16, 429-439	3.1	43	
135	Probabilistic Collocation Based Kalman Filter for Assisted History Matching 2011,		1	
134	A Probabilistic Collocation-Based Kalman Filter for History Matching. SPE Journal, 2011 , 16, 294-306	3.1	24	
133	Effect of spatial heterogeneity on plume distribution and dilution during CO2 sequestration. <i>International Journal of Greenhouse Gas Control</i> , 2011 , 5, 281-293	4.2	14	
132	New method for reservoir characterization and optimization using CRMEnOpt approach. <i>Journal of Petroleum Science and Engineering</i> , 2011 , 77, 155-171	4.4	26	
131	Lattice Boltzmann method on quadtree grids. <i>Physical Review E</i> , 2011 , 83, 026707	2.4	10	
130	History Matching for Non-Gaussian Random Fields Using the Probabilistic Collocation Based Kalman Filter 2011 ,		2	
129	Influence of African dust on ocean@tmosphere variability in the tropical Atlantic. <i>Nature Geoscience</i> , 2011 , 4, 762-765	18.3	83	
128	The NCEP GODAS Ocean Analysis of the Tropical Pacific Mixed Layer Heat Budget on Seasonal to Interannual Time Scales. <i>Journal of Climate</i> , 2010 , 23, 4901-4925	4.4	74	

127	COUPLED FLUID FLOW AND GEOMECHANICS IN COALBED METHANE RECOVERY STUDY. <i>Modern Physics Letters B</i> , 2010 , 24, 1291-1294	1.6	2
126	A multi-scale investigation of interfacial transport, pore fluid flow, and fine particle deposition in a sediment bed. <i>Water Resources Research</i> , 2010 , 46,	5.4	29
125	A multiscale probabilistic collocation method for subsurface flow in heterogeneous media. <i>Water Resources Research</i> , 2010 , 46,	5.4	10
124	Pore-scale simulation of density-driven convection in fractured porous media during geological CO2 sequestration. <i>Water Resources Research</i> , 2010 , 46,	5.4	26
123	Role of low flow and backward flow zones on colloid transport in pore structures derived from real porous media. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	27
122	Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	14
121	Data Assimilation of Coupled Fluid Flow and Geomechanics Using the Ensemble Kalman Filter. <i>SPE Journal</i> , 2010 , 15, 382-394	3.1	18
120	Optimization of Carbon Dioxide Sequestration and Enhanced Oil Recovery in Oil Reservoir 2010 ,		11
119	Ensemble Based Characterization and History Matching of Naturally Fractured Tight/Shale Gas Reservoirs 2010 ,		10
118	Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2010 , 47, 1242-1253	6	95
117	Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. <i>Advances in Water Resources</i> , 2010 , 33, 678-690	4.7	132
116	A comparative study of numerical approaches to risk assessment of contaminant transport. <i>Stochastic Environmental Research and Risk Assessment</i> , 2010 , 24, 971-984	3.5	27
115	A stochastic collocation based Kalman filter for data assimilation. <i>Computational Geosciences</i> , 2010 , 14, 721-744	2.7	34
114	History matching of facies distribution with the EnKF and level set parameterization. <i>Journal of Computational Physics</i> , 2010 , 229, 8011-8030	4.1	74
113	Lattice Boltzmann simulation of the rise and dissolution of two-dimensional immiscible droplets. <i>Physics of Fluids</i> , 2009 , 21, 103301	4.4	14
112	Probabilistic collocation method for unconfined flow in heterogeneous media. <i>Journal of Hydrology</i> , 2009 , 365, 4-10	6	43
111	A stochastic approach to nonlinear unconfined flow subject to multiple random fields. <i>Stochastic Environmental Research and Risk Assessment</i> , 2009 , 23, 823-835	3.5	6
110	Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 2009, 33, 565-5	58 9 2	177

109	Evaluating the uncertainty of Darcy velocity with sparse grid collocation method. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 3270-3278		2
108	Multi-crack interaction in limestone subject to stress and flow of chemical solutions. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2009 , 46, 159-171	6	78
107	Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization. <i>Journal of Petroleum Science and Engineering</i> , 2009 , 66, 1-14	4.4	54
106	Lattice Boltzmann simulation of snow crystal growth in clouds. <i>Journal of Geophysical Research</i> , 2009 , 114,		14
105	Stochastic analysis of unsaturated flow with probabilistic collocation method. <i>Water Resources Research</i> , 2009 , 45,	5.4	53
104	Onset of convection over a transient base-state in anisotropic and layered porous media. <i>Journal of Fluid Mechanics</i> , 2009 , 641, 227-244	3.7	61
103	Efficient Ensemble-Based Closed-Loop Production Optimization. SPE Journal, 2009, 14, 634-645	3.1	205
102	Efficient and Accurate Quantification of Uncertainty for Multiphase Flow With the Probabilistic Collocation Method. <i>SPE Journal</i> , 2009 , 14, 665-679	3.1	40
101	Stochastic Collocation Methods for Efficient and Accurate Quantification of Uncertainty in Multiphase Reservoir Simulations 2009 ,		2
100	Non-modal growth of perturbations in density-driven convection in porous media. <i>Journal of Fluid Mechanics</i> , 2008 , 609, 285-303	3.7	95
99	Efficient Ensemble-Based Closed-Loop Production Optimization 2008,		44
98	Modelling study on the impact of deep building foundations on the groundwater system. <i>Hydrological Processes</i> , 2008 , 22, 1857-1865	3.3	18
97	Stochastic collocation and mixed finite elements for flow in porous media. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2008 , 197, 3547-3559	5.7	39
96	Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. <i>Advances in Water Resources</i> , 2008 , 31, 975-986	4.7	83
95	Information Fusion using the Kalman Filter based on Karhunen-Lolle Decomposition. <i>Studies in Computational Intelligence</i> , 2008 , 43-68	0.8	
94	Explicit analytical solutions for one-dimensional steady state flow in layered, heterogeneous unsaturated soils under random boundary conditions. <i>Water Resources Research</i> , 2007 , 43,	5.4	5
93	Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Lowe-based moment equation approach. <i>Water Resources Research</i> , 2007 , 43,	5.4	15
92	An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale. <i>Water Resources Research</i> , 2007 , 43,	5.4	136

91	Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods. <i>Water Resources Research</i> , 2007 , 43,	5.4	159
90	Reply to comment of Nield. <i>Advances in Water Resources</i> , 2007 , 30, 698-699	4.7	2
89	Recent Changes in the Pacific Subtropical Cells Inferred from an Eddy-Resolving Ocean Circulation Model*. <i>Journal of Physical Oceanography</i> , 2007 , 37, 1340-1356	2.4	19
88	Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter. <i>SPE Journal</i> , 2007 , 12, 108-117	3.1	36
87	Stochastic Simulations for Flow in Nonstationary Randomly Heterogeneous Porous Media Using a KL-Based Moment-Equation Approach. <i>Multiscale Modeling and Simulation</i> , 2007 , 6, 228-245	1.8	33
86	Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. <i>Advances in Water Resources</i> , 2006 , 29, 397-407	4.7	200
85	A micro amperometric immunosensor for detection of human immunoglobulin. <i>Science in China Series F: Information Sciences</i> , 2006 , 49, 397-408		4
84	Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. Journal of Geophysical Research, 2006, 111, n/a-n/a		170
83	A stochastic analysis of transient two-phase flow in heterogeneous porous media. <i>Water Resources Research</i> , 2006 , 42,	5.4	10
82	Stochastic uncertainty analysis for unconfined flow systems. Water Resources Research, 2006, 42,	5.4	10
81	Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. <i>Ocean Modelling</i> , 2006 , 15, 250-273	3	81
80	Pacific subtropical cell variability in coupled climate model simulations of the late 19th 20th century. <i>Ocean Modelling</i> , 2006 , 15, 236-249	3	8
79	Accurate, Efficient Quantification of Uncertainty for Flow in Heterogeneous Reservoirs Using the KLME Approach. <i>SPE Journal</i> , 2006 , 11, 239-247	3.1	8
78	Data assimilation for transient flow in geologic formations via ensemble Kalman filter. <i>Advances in Water Resources</i> , 2006 , 29, 1107-1122	4.7	260
77	Displacement of a three-dimensional immiscible droplet in a duct. <i>Journal of Fluid Mechanics</i> , 2005 , 545, 41	3.7	97
76	Analytical solutions to statistical moments for transient flow in two-dimensional, bounded, randomly heterogeneous media. <i>Water Resources Research</i> , 2005 , 41,	5.4	9
75	A stochastic analysis of steady state two-phase flow in heterogeneous media. <i>Water Resources Research</i> , 2005 , 41,	5.4	17
74	Dynamic Reservoir Data Assimilation With an Efficient, Dimension-Reduced Kalman Filter 2005,		1

(2003-2005)

73	Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments. <i>Fuel Processing Technology</i> , 2005 , 86, 1647-1665	7.2	50	
72	A Solute Flux Approach to Transport through Bounded, Unsaturated Heterogeneous Porous Media. <i>Vadose Zone Journal</i> , 2004 , 3, 513-526	2.7	2	
71	Stochastic delineation of well capture zones. <i>Stochastic Environmental Research and Risk Assessment</i> , 2004 , 18, 39-46	3.5	7	
70	A numerical method of moments for solute transport in physically and chemically nonstationary formations: linear equilibrium sorption with random Kd. <i>Stochastic Environmental Research and Risk Assessment</i> , 2004 , 18, 22-30	3.5	3	
69	Forum: The state of stochastic hydrology. <i>Stochastic Environmental Research and Risk Assessment</i> , 2004 , 18, 265	3.5	18	
68	Conditional simulations of flow in randomly heterogeneous porous media using a KL-based moment-equation approach. <i>Advances in Water Resources</i> , 2004 , 27, 859-874	4.7	31	
67	An efficient, high-order perturbation approach for flow in random porous media via Karhunen II o II o De and polynomial expansions. <i>Journal of Computational Physics</i> , 2004 , 194, 773-794	4.1	245	
66	Immiscible displacement in a channel: simulations of fingering in two dimensions. <i>Advances in Water Resources</i> , 2004 , 27, 13-22	4.7	93	
65	Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. <i>Advances in Water Resources</i> , 2004 , 27, 775-784	4.7	21	
64	A Comparative Study on Uncertainty Quantification for Flow in Randomly Heterogeneous Media Using Monte Carlo Simulations and Conventional and KL-Based Moment-Equation Approaches. <i>SIAM Journal of Scientific Computing</i> , 2004 , 26, 558-577	2.6	31	
63	Pore scale simulation of solute transport in fractured porous media. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	28	
62	Lattice Boltzmann model for crystal growth from supersaturated solution. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	72	
61	A Markov chain Monte Carlo method for the groundwater inverse problem. <i>Developments in Water Science</i> , 2004 , 1273-1283			
60	Stochastic analysis of saturated linsaturated flow in heterogeneous media by combining Karhunen-Loeve expansion and perturbation method. <i>Journal of Hydrology</i> , 2004 , 294, 18-38	6	27	
59	Pacific Ocean circulation rebounds. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	141	
58	Pore-scale simulations of flow, transport, and reaction in porous media. <i>Developments in Water Science</i> , 2004 , 55, 49-60		1	
57	A Solute Flux Approach to Transport through Bounded, Unsaturated Heterogeneous Porous Media. <i>Vadose Zone Journal</i> , 2004 , 3, 513-526	2.7	1	
56	A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field. <i>Advances in Water Resources</i> , 2003 , 26, 1149-1169	4.7	14	

55	Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms. <i>Journal of Computational Physics</i> , 2003 , 188, 296-3	17.1	25
54	On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media. <i>Advances in Water Resources</i> , 2003 , 26, 1177-1188	4.7	36
53	Stochastic study on groundwater flow and solute transport in a porous medium with multi-scale heterogeneity. <i>Advances in Water Resources</i> , 2003 , 26, 541-560	4.7	6
52	Solute spreading in nonstationary flows in bounded, heterogeneous unsaturated-saturated media. <i>Water Resources Research</i> , 2003 , 39,	5.4	11
51	On stochastic study of well capture zones in bounded, randomly heterogeneous media. <i>Water Resources Research</i> , 2003 , 39,	5.4	14
50	Simulation of dissolution and precipitation in porous media. <i>Journal of Geophysical Research</i> , 2003 , 108,		119
49	Applications of nonstationary stochastic theory to solute transport in multi-scale geological media. <i>Journal of Hydrology</i> , 2003 , 275, 208-228	6	11
48	Observational Evidence for Flow between the Subtropical and Tropical Atlantic: The Atlantic Subtropical Cells*. <i>Journal of Physical Oceanography</i> , 2003 , 33, 1783-1797	2.4	94
47	FLOW IN FRACTURED POROUS MEDIA 2002 , 297-325		8
46			
46	UNSATURATED FLOW 2002 , 221-IV		
45	UNSATURATED FLOW 2002 , 221-IV Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603-	850.4	407
			407
45	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603-		
45 44	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603- Unified lattice Boltzmann method for flow in multiscale porous media. <i>Physical Review E</i> , 2002 , 66, 056. Modeling Complex, Nonlinear Geological Processes. <i>Annual Review of Earth and Planetary Sciences</i> ,	3074	105
45 44 43	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603- Unified lattice Boltzmann method for flow in multiscale porous media. <i>Physical Review E</i> , 2002 , 66, 056. Modeling Complex, Nonlinear Geological Processes. <i>Annual Review of Earth and Planetary Sciences</i> , 2002 , 30, 35-64 Stochastic analysis of solute transport in heterogeneous, dual-permeability media. <i>Water Resources</i>	3 <u>@</u> <i>Z</i> ₄	105
45 44 43 42	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603- Unified lattice Boltzmann method for flow in multiscale porous media. <i>Physical Review E</i> , 2002 , 66, 056: Modeling Complex, Nonlinear Geological Processes. <i>Annual Review of Earth and Planetary Sciences</i> , 2002 , 30, 35-64 Stochastic analysis of solute transport in heterogeneous, dual-permeability media. <i>Water Resources Research</i> , 2002 , 38, 14-1-14-16 Stochastic analysis of flow in a heterogeneous unsaturated-saturated system. <i>Water Resources</i>	3 @ 74 15.3 5.4	105 14 15
45 44 43 42 41	Slowdown of the meridional overturning circulation in the upper Pacific Ocean. <i>Nature</i> , 2002 , 415, 603- Unified lattice Boltzmann method for flow in multiscale porous media. <i>Physical Review E</i> , 2002 , 66, 0563 Modeling Complex, Nonlinear Geological Processes. <i>Annual Review of Earth and Planetary Sciences</i> , 2002 , 30, 35-64 Stochastic analysis of solute transport in heterogeneous, dual-permeability media. <i>Water Resources Research</i> , 2002 , 38, 14-1-14-16 Stochastic analysis of flow in a heterogeneous unsaturated-saturated system. <i>Water Resources Research</i> , 2002 , 38, 10-1-10-15 Nonstationary stochastic analysis of flow in a heterogeneous semiconfined aquifer. <i>Water</i>	3 @ 74 15.3 5.4	105 14 15 29

37	Lattice Boltzmann simulation of chemical dissolution in porous media. <i>Physical Review E</i> , 2002 , 65, 0363	3 1 <u>2</u> 84	183
36	Stochastic Analysis of Transient Flow in Heterogeneous, Variably Saturated Porous Media: The van Genuchten Mualem Constitutive Model. <i>Vadose Zone Journal</i> , 2002 , 1, 137-149	2.7	20
35	Stochastic Analysis of Transient Flow in Heterogeneous, Variably Saturated Porous Media: The van Genuchten Mualem Constitutive Model. <i>Vadose Zone Journal</i> , 2002 , 1, 137	2.7	
34	STOCHASTIC VARIABLES AND PROCESSES 2002 , 40-94		
33	STEADY-STATE SATURATED FLOW 2002 , 95-202		
32	Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current. <i>Journal of Geophysical Research</i> , 2001 , 106, 22143-22158		72
31	Stochastic Formulation for Uncertainty Analysis of Two-Phase Flow in Heterogeneous Reservoirs. <i>SPE Journal</i> , 2000 , 5, 60-70	3.1	23
30	Stochastic analysis of transient saturated flow through heterogeneous fractured porous media: A double-permeability approach. <i>Water Resources Research</i> , 2000 , 36, 865-874	5.4	21
29	Solute flux approach to transport through spatially nonstationary flow in porous media. <i>Water Resources Research</i> , 2000 , 36, 2107-2120	5.4	35
28	Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. <i>Geophysical Research Letters</i> , 2000 , 27, 1195-1198	4.9	194
27	Prediction of solute spreading during vertical infiltration in unsaturated, bounded heterogeneous porous media. <i>Water Resources Research</i> , 2000 , 36, 715-723	5.4	9
26	Quantification of uncertainty for fluid flow in heterogeneous petroleum reservoirs. <i>Physica D: Nonlinear Phenomena</i> , 1999 , 133, 488-497	3.3	6
25	Stochastic Analysis of Immiscible Two-Phase Flow in Heterogeneous Media. SPE Journal, 1999, 4, 380-3	8 § .1	33
24	Water flow and solute spreading in heterogeneous soils with spatially variable water content. Water Resources Research, 1999 , 35, 415-426	5.4	39
23	Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media. <i>Water Resources Research</i> , 1999 , 35, 1127-1141	5.4	54
22	Moment-Equation Approach to Single Phase Fluid Flow in Heterogeneous Reservoirs. <i>SPE Journal</i> , 1999 , 4, 118-127	3.1	16
21	Stochastic analysis of biodegradation fronts in one-dimensional heterogeneous porous media. <i>Advances in Water Resources</i> , 1998 , 22, 103-116	4.7	14
20	Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media. <i>Water Resources Research</i> , 1998 , 34, 529-538	5.4	56

19	Nonstationary stochastic analysis of steady state flow through variably saturated, heterogeneous media. <i>Water Resources Research</i> , 1998 , 34, 1091-1100	5.4	36
18	Stochastic analysis of steady-state unsaturated flow in heterogeneous media: Comparison of the Brooks-Corey and Gardner-Russo Models. <i>Water Resources Research</i> , 1998 , 34, 1437-1449	5.4	45
17	Time-Dependent Dispersion of Nonergodic Plumes in Two-Dimensional Heterogeneous Aquifers. Journal of Hydrologic Engineering - ASCE, 1997 , 2, 91-94	1.8	13
16	Conditional Stochastic Analysis for Multiphase Trsnsport in Randomly Heterogeneous, variably Saturated Media. <i>Transport in Porous Media</i> , 1997 , 27, 265-287	3.1	
15	Effect of Local Dispersion on Solute Transport in Randomly Heterogeneous Media. <i>Water Resources Research</i> , 1996 , 32, 2715-2723	5.4	44
14	Nonergodic Solute Transport in Three-Dimensional Heterogeneous Isotropic Aquifers. <i>Water Resources Research</i> , 1996 , 32, 2955-2963	5.4	33
13	Head and Velocity Covariances Under Quasi-Steady State flow and their Effects on Advective Transport. <i>Water Resources Research</i> , 1996 , 32, 77-83	5.4	24
12	Higher-Order Effects on Flow and Transport in Randomly Heterogeneous Porous Media. <i>Water Resources Research</i> , 1996 , 32, 571-582	5.4	59
11	Impacts of local dispersion and first-order decay on solute transport in randomly heterogeneous porous media. <i>Transport in Porous Media</i> , 1995 , 21, 123-144	3.1	8
10	Eulerian-Lagrangian Analysis of Transport Conditioned on Hydraulic Data: 1. Analytical-Numerical Approach. <i>Water Resources Research</i> , 1995 , 31, 39-51	5.4	55
9	Eulerian-Lagrangian Analysis of Transport Conditioned on Hydraulic Data: 2. Effects of Log Transmissivity and Hydraulic Head Measurements. <i>Water Resources Research</i> , 1995 , 31, 53-63	5.4	18
8	Eulerian-Lagrangian Analysis of Transport Conditioned on Hydraulic Data: 3. Spatial Moments, Travel Time Distribution, Mass Flow Rate, and Cumulative Release Across a Compliance Surface. <i>Water Resources Research</i> , 1995 , 31, 65-75	5.4	25
7	Eulerian-Lagrangian Analysis of Transport Conditioned on Hydraulic Data: 4. Uncertain Initial Plume State and Non-Gaussian Velocities. <i>Water Resources Research</i> , 1995 , 31, 77-88	5.4	14
6	Comment on A note on head and velocity covariances in three-dimensional flow through heterogeneous anisotropic porous medialby Y. Rubin and G. Dagan. <i>Water Resources Research</i> , 1992 , 28, 3343-3344	5.4	36
5	Efficient Uncertainty Quantification and Data Assimilation via Theory-Guided Convolutional Neural Network. <i>SPE Journal</i> , 1900 , 1-29	3.1	2
4	Digital Rock Reconstruction with User-Defined Properties Using Conditional Generative Adversarial Networks. <i>Transport in Porous Media</i> ,1	3.1	O
3	A comparative study of different granular structures induced from the information systems. <i>Soft Computing</i> ,1	3.5	О
2	Introduction to special section: Geoscience of hydraulic fracturing. <i>Interpretation</i> ,1-3	1.4	

A Lagrangian dual-based theory-guided deep neural network. *Complex & Intelligent Systems*,1

7.1