
Deepak Kanojia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9238135/publications.pdf Version: 2024-02-01

DEEDAR KANOUA

#	Article	IF	CITATIONS
1	CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells. Cancer Research, 2016, 76, 5671-5682.	0.9	454
2	4-Nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncology, 2006, 42, 655-667.	1.5	229
3	CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin–TGFβ signaling. Oncogene, 2012, 31, 2614-2626.	5.9	135
4	Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23714-23723.	7.1	101
5	Dynamic In Vivo SPECT Imaging of Neural Stem Cells Functionalized with Radiolabeled Nanoparticles for Tracking of Glioblastoma. Journal of Nuclear Medicine, 2016, 57, 279-284.	5.0	79
6	Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro-Oncology, 2015, 17, ii24-ii36.	1.2	64
7	FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene, 2019, 38, 6445-6460.	5.9	56
8	Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics, 2012, 12, 3407-3415.	2.2	51
9	Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 2017, 8, 45415-45431.	1.8	47
10	Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases. Stem Cells, 2015, 33, 2985-2994.	3.2	45
11	Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma. Stem Cell Reports, 2016, 7, 471-482.	4.8	45
12	βIII-Tubulin Regulates Breast Cancer Metastases to the Brain. Molecular Cancer Therapeutics, 2015, 14, 1152-1161.	4.1	44
13	Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy. Scientific Reports, 2013, 3, 2473.	3.3	41
14	Keratins: Markers of cell differentiation or regulators of cell differentiation?. Journal of Biosciences, 2007, 32, 629-634.	1.1	35
15	Landscape of combination therapy trials in breast cancer brain metastasis. International Journal of Cancer, 2020, 147, 1939-1952.	5.1	31
16	GCN2 is essential for CD8+ T cell survival and function in murine models of malignant glioma. Cancer Immunology, Immunotherapy, 2020, 69, 81-94.	4.2	30
17	Genes that Mediate Metastasis across the Blood–Brain Barrier. Trends in Cancer, 2020, 6, 660-676.	7.4	25
18	The Network of Cytokines in Brain Metastases. Cancers, 2021, 13, 142.	3.7	25

Deepak Kanojia

#	Article	lF	CITATIONS
19	Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget, 2017, 8, 89391-89405.	1.8	25
20	Diagnostic Clinical Trials in Breast Cancer Brain Metastases: Barriers and Innovations. Clinical Breast Cancer, 2019, 19, 383-391.	2.4	20
21	A Dendritic Cell-Targeted Adenoviral Vector Facilitates Adaptive Immune Response Against Human Glioma Antigen (CMV-IE) and Prolongs Survival in a Human Glioma Tumor Model. Neurotherapeutics, 2018, 15, 1127-1138.	4.4	17
22	Current state of clinical trials in breast cancer brain metastases. Neuro-Oncology Practice, 2019, 6, 392-401.	1.6	16
23	Local Application of Autologous Platelet-Rich Fibrin Patch (PRF-P) Suppresses Regulatory T Cell Recruitment in a Murine Glioma Model. Molecular Neurobiology, 2019, 56, 5032-5040.	4.0	14
24	BET inhibition increases βIII-tubulin expression and sensitizes metastatic breast cancer in the brain to vinorelbine. Science Translational Medicine, 2020, 12, .	12.4	14
25	A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors. Scientific Reports, 2015, 5, 18133.	3.3	13
26	A Comparative Study of Replication-Incompetent and -Competent Adenoviral Therapy-Mediated Immune Response in a Murine Glioma Model. Molecular Therapy - Oncolytics, 2017, 5, 97-104.	4.4	13
27	Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters. Journal of Translational Medicine, 2016, 14, 134.	4.4	12
28	A Genetically Modified Adenoviral Vector with a Phage Display-Derived Peptide Incorporated into Fiber Fibritin Chimera Prolongs Survival in Experimental Glioma. Human Gene Therapy, 2015, 26, 635-646.	2.7	11
29	Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chemical Biology, 2022, 29, 358-372.e5.	5.2	10
30	Alterations in keratins and associated proteins during 4- Nitroquinoline-1-oxide induced rat oral carcinogenesis. Journal of Carcinogenesis, 2012, 11, 14.	2.5	8
31	Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy. Therapeutic Delivery, 2015, 6, 453-468.	2.2	8
32	FKBP1A upregulation correlates with poor prognosis and increased metastatic potential of HNSCC. Cell Biology International, 2022, 46, 443-453.	3.0	8
33	Repurposing autophagy regulators in brain tumors. International Journal of Cancer, 2022, 151, 167-180.	5.1	7
34	Combination of tucatinib and neural stem cells secreting anti-HER2 antibody prolongs survival of mice with metastatic brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
35	Neural Stem Cellâ€Mediated Delivery of Oncolytic Adenovirus. Current Protocols in Human Genetics, 2015, 85, 13.11.1-13.11.9.	3.5	5
36	Role of Electron Microscopy in Early Detection of Altered Epithelium During Experimental Oral Carcinogenesis. Microscopy and Microanalysis, 2019, 25, 1367-1375.	0.4	4

DEEPAK ΚΑΝΟJΙΑ

#	Article	IF	CITATIONS
37	Enrichment and Selective Targeting of Cancer Stem Cells in Colorectal Cancer Cell Lines. , 2013, 01, .		4
38	Translocon-associated Protein Subunit SSR3 Determines and Predicts Susceptibility to Paclitaxel in Breast Cancer and Glioblastoma. Clinical Cancer Research, 2022, 28, 3156-3169.	7.0	4
39	Alterations in desmosomal adhesion at protein and ultrastructure levels during the sequential progressive grades of human oral tumorigenesis. European Journal of Oral Sciences, 2018, 126, 251-262.	1.5	3
40	The Microenvironment of Breast Cancer Stem Cells. , 0, , .		1
41	IMMU-06. GCN2 KINASE IS ESSENTIAL FOR ADAPTIVE T-CELL IMMUNITY IN GLIOMA. Neuro-Oncology, 2017, 19, vi113-vi113.	1.2	1
42	Targeting the molecular mechanisms of glioma stem cell resistance to chemotherapy. , 2021, , 587-634.		1
43	All Aboard. , 2017, , 475-499.		1
44	ET-05 * INTRANASAL DELIVERY OF NEURAL STEM CELLS LOADED WITH ONCOLYTIC ADENOVIRUS EXTENDS SURVIVAL OF MICE WITH INTRACRANIAL GLIOMA. Neuro-Oncology, 2014, 16, v79-v80.	1.2	0
45	Type II PtdIns 4-kinase β associates with CD4–p56lck complex and is involved in CD4 receptor signaling. Molecular and Cellular Biochemistry, 2014, 395, 231-239.	3.1	0
46	BMET-40NANO PLATFORM FOR DYNAMIC IN VIVO TRACKING OF NEURAL STEM CELLS TO BRAIN METASTASES OF BREAST CANCER. Neuro-Oncology, 2015, 17, v53.5-v54.	1.2	0
47	CMET-19. THE ROLE OF BRAIN SPECIFIC FATTY ACID BINDING PROTEIN 7 IN BREAST CANCER METASTASES TO THE BRAIN. Neuro-Oncology, 2017, 19, vi43-vi43.	1.2	0
48	CBIO-29. ACOT7 REGULATES COLONIZATION OF BREAST CANCER CELLS IN THE BRAIN BY REGULATING ENDOPLASMIC RETICULUM STRESS RESPONSE. Neuro-Oncology, 2017, 19, vi38-vi38.	1.2	0
49	EXTH-16. RATIONAL DESIGN OF COMBINATION THERAPY AGAINST HER2+ BRAIN METASTASES OF BREAST CANCER USING JQ-1 AND VINORELBINE. Neuro-Oncology, 2017, 19, vi76-vi76.	1.2	0
50	STEM-37. GENETIC EDITING OF NEURAL STEM CELLS FOR INTRANASAL THERAPEUTIC DELIVERY TO MALIGNANT BRAIN TUMORS. Neuro-Oncology, 2017, 19, vi233-vi233.	1.2	0
51	P08.46 Synergistic Therapeutic Efficacy via Immunomodulatory Platelet Rich Fibrin Patch (PRF-P) in Combination with Oncolytic Adenovirus for the Treatment of Glioma. Neuro-Oncology, 2017, 19, iii64-iii64.	1.2	0
52	PATH-22. BRAINGENEEXPRESS: AÂWEB APPLICATION FOR DATA VISUALIZATION OF BRAIN TUMOR RESEARCH. Neuro-Oncology, 2017, 19, vi175-vi175.	1.2	0
53	IMMU-06. ABSENCE OF THE AMINO ACID STRESS-SENSOR GCN2 REDUCES SUPPRESSIVE EFFECTS OF MDSCs IN GLIOMA. Neuro-Oncology, 2018, 20, vi122-vi122.	1.2	0
54	Gene/Viral Treatment Approaches for Malignant Brain Cancer. , 2018, , 211-227.		0

#	Article	IF	CITATIONS
55	Abstract 4519: In vitro cell and in vivo animal studies of the demethylating agent in treating HER2-amplified breast cancer. , 2011, , .		0
56	Abstract LB-203: Mathematical modeling of the dynamic interaction between cancers stem cells and non-stem cancer cells and its potential clinical implication. , 2012, , .		0
57	Abstract 5347: Identification of differentially expressed proteins in breast cancer stem cells using proteomic profiling. , 2012, , .		0
58	Abstract 2006: The role of neuronal predominant gene expression in breast cancer brain metastasis. , 2014, , .		0
59	IMMU-29. B-CELL-BASED VACCINE PRODUCES GLIOBLASTOMA-REACTIVE ANTIBODIES THAT CONTRIBUTE TO TUMOR CLEARANCE. Neuro-Oncology, 2021, 23, vi98-vi98.	1.2	0