
Kirsten H Limesand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9238115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Management of Salivary Gland Hypofunction and Xerostomia in Head-and-Neck Cancer Patients: Successes and Barriers. International Journal of Radiation Oncology Biology Physics, 2010, 78, 983-991.	0.4	278
2	Suppression of Apoptosis in the Protein Kinase CδNull Mouse in Vivo. Journal of Biological Chemistry, 2006, 281, 9728-9737.	1.6	126
3	Radiation-Induced Salivary Gland Dysfunction Results From p53-Dependent Apoptosis. International Journal of Radiation Oncology Biology Physics, 2009, 73, 523-529.	0.4	107
4	Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. Journal of the National Cancer Institute Monographs, 2019, 2019, .	0.9	107
5	Lifespanâ€extending caloric restriction or m <scp>TOR</scp> inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging Cell, 2015, 14, 130-138.	3.0	84
6	Suppression of Radiation-Induced Salivary Gland Dysfunction by IGF-1. PLoS ONE, 2009, 4, e4663.	1.1	77
7	Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. Journal of Clinical Medicine, 2020, 9, 4095.	1.0	76
8	P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. Journal of Biological Chemistry, 2017, 292, 16626-16637.	1.6	67
9	Restoration of radiation therapy-induced salivary gland dysfunction in mice by post therapy IGF-1 administration. BMC Cancer, 2010, 10, 417.	1.1	64
10	MDM2 Is Required for Suppression of Apoptosis by Activated Akt1 in Salivary Acinar Cells. Molecular and Cellular Biology, 2006, 26, 8840-8856.	1.1	52
11	Current State of Knowledge on Salivary Gland Cancers. Critical Reviews in Oncogenesis, 2018, 23, 139-151.	0.2	47
12	Control of Glycolytic Flux by AMP-Activated Protein Kinase in Tumor Cells Adapted to Low pH. Translational Oncology, 2012, 5, 208-216.	1.7	42
13	Autophagy Correlates with Maintenance of Salivary Gland Function Following Radiation. Scientific Reports, 2014, 4, 5206.	1.6	42
14	Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Frontiers in Nutrition, 2016, 3, 48.	1.6	41
15	Insulin-Like Growth Factor–1 Preserves Salivary Gland Function After Fractionated Radiation. International Journal of Radiation Oncology Biology Physics, 2010, 78, 579-586.	0.4	38
16	Autophagic reliance promotes metabolic reprogramming in oncogenic KRAS-driven tumorigenesis. Autophagy, 2018, 14, 1481-1498.	4.3	37
17	Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors. Integrative Cancer Therapies, 2011, 10, 328-340.	0.8	36
18	The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis. International Journal of Molecular Sciences, 2020, 21, 3304.	1.8	36

KIRSTEN H LIMESAND

#	Article	IF	CITATIONS
19	Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells. PLoS ONE, 2014, 9, e107893.	1.1	35
20	Prevention of Radiation-Induced Salivary Gland Dysfunction Utilizing a CDK Inhibitor in a Mouse Model. PLoS ONE, 2012, 7, e51363.	1.1	34
21	Quercetin Selectively Inhibits Bioreduction and Enhances Apoptosis in Melanoma Cells That Overexpress Tyrosinase. Nutrition and Cancer, 2007, 59, 258-268.	0.9	32
22	Quercetin abrogates chemoresistance in melanoma cells by modulating ΔNp73. BMC Cancer, 2010, 10, 282.	1.1	31
23	Pharmacological Activation of the EDA/EDAR Signaling Pathway Restores Salivary Gland Function following Radiation-Induced Damage. PLoS ONE, 2014, 9, e112840.	1.1	28
24	The Rapalogue, CCI-779, Improves Salivary Gland Function following Radiation. PLoS ONE, 2014, 9, e113183.	1.1	28
25	aPKCζ-dependent Repression of Yap is Necessary for Functional Restoration of Irradiated Salivary Glands with IGF-1. Scientific Reports, 2018, 8, 6347.	1.6	27
26	P2X7 receptor deletion suppresses γ-radiation-induced hyposalivation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R687-R696.	0.9	25
27	Impact of targeting insulin-like growth factor signaling in head and neck cancers. Growth Hormone and IGF Research, 2013, 23, 135-140.	0.5	23
28	P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Frontiers in Pharmacology, 2020, 11, 222.	1.6	18
29	PKCζ and JNK signaling regulate radiation-induced compensatory proliferation in parotid salivary glands. PLoS ONE, 2019, 14, e0219572.	1.1	16
30	Persistent disruption of lateral junctional complexes and actin cytoskeleton in parotid salivary glands following radiation treatment. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R656-R667.	0.9	15
31	Characterization of rat parotid and submandibular acinar cell apoptosis in primary culture. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 170-177.	0.7	14
32	Administration of growth factors promotes salisphere formation from irradiated parotid salivary glands. PLoS ONE, 2018, 13, e0193942.	1.1	10
33	Integration of metabolomics and transcriptomics reveals convergent pathways driving radiation-induced salivary gland dysfunction. Physiological Genomics, 2021, 53, 85-98.	1.0	10
34	Palliative Care for Salivary Gland Dysfunction Highlights the Need for Regenerative Therapies: A Review on Radiation and Salivary Gland Stem Cells. Journal of Palliative Care & Medicine, 2014, 04, .	0.1	9
35	Indomethacin Treatment Post-irradiation Improves Mouse Parotid Salivary Gland Function via Modulation of Prostaglandin E2 Signaling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697671.	2.0	9
36	Yap activation in irradiated parotid salivary glands is regulated by ROCK activity. PLoS ONE, 2020, 15, e0232921.	1.1	7

KIRSTEN H LIMESAND

#	Article	IF	CITATIONS
37	Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine. Cellular Oncology, 2008, 30, 371-87.	1.9	5
38	Radiation Treatment of Organotypic Cultures from Submandibular and Parotid Salivary Glands Models Key In Vivo Characteristics. Journal of Visualized Experiments, 2019, , .	0.2	2
39	Differences in Proteomic Profiles Between Caries Free and Caries Affected Children. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 0, 20, .	0.7	2
40	Persistent disruption of lateral junctional complexes and actin cytoskeleton in parotid salivary glands following radiation treatment. FASEB Journal, 2018, 32, 869.4.	0.2	0
41	Protein Profiles of Individuals with Erosive Tooth Wear. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 0, 20, .	0.7	0