So-Jin Park

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/923747/so-jin-park-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 1,294 20 29 g-index

92 1,361 3 4.58 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Solid-liquid equilibrium and kinematic viscosity of binary mixture of fatty acid alkyl esters. <i>Korean Journal of Chemical Engineering</i> , 2021 , 38, 1006-1013	2.8	
90	Measurement and correlation of thermodynamic properties of ternary mixtures of oxygenated fuel. <i>Korean Journal of Chemical Engineering</i> , 2020 , 37, 1181-1194	2.8	2
89	Solid-liquid phase equilibria, excess volume and molar refraction deviation for carbonate ester systems with Butyrolactone (GBL). <i>Journal of Molecular Liquids</i> , 2020 , 314, 113627	6	
88	Hydrothermal Desorption of Cs with Oxalic Acid from Hydrobiotite and Wastewater Treatment by Chemical Precipitation. <i>Energies</i> , 2020 , 13, 3284	3.1	2
87	Measurement and modelling of solid-liquid equilibria, density and viscosity of fatty acid methyl or ethyl esters. <i>Journal of Molecular Liquids</i> , 2020 , 314, 113628	6	2
86	Volumetric, acoustic and optical studies of ternary mixture of diisopropyl ether, n-heptane and n-octane. <i>Journal of Molecular Liquids</i> , 2020 , 306, 112605	6	9
85	Density and viscosity studies of mixtures of oxygenate with n-alkanes (C9-C12) at (298.15, 308.15 and 318.15) K: Application of Prigogine lory Patterson and Bloomfield and Dewan Model. <i>Journal of Molecular Liquids</i> , 2020 , 306, 112859	6	9
84	Volumetric, enthalpic and VLE studies of binary mixtures of isomers of butyl chloride with cyclohexane at 298.15 K. <i>Journal of Molecular Liquids</i> , 2020 , 298, 111946	6	6
83	Cs desorption behavior during hydrothermal treatment of illite with oxalic acid. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 35580-35590	5.1	6
82	Measurement and modeling of transport properties of binary liquid mixtures containing oxygenates and n-alkanes. <i>Korean Journal of Chemical Engineering</i> , 2019 , 36, 1922-1931	2.8	4
81	Colorimetric Method for Detection of Hydrazine Decomposition in Chemical Decontamination Process. <i>Energies</i> , 2019 , 12, 3967	3.1	5
80	Pattern formation using polystyrene benzaldimine self-assembled monolayer by soft X-ray. <i>Surface and Interface Analysis</i> , 2019 , 51, 408-412	1.5	1
79	Solid-liquid phase equilibria, excess molar volume, and molar refraction deviation for the mixtures of ethanoic acid with propanoic, butanoic, and pentanoic acid. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 1710-1715	2.8	1
78	Thermo-physical properties, excess and deviation properties for a mixture of Ebutyrolactone with diethyl carbonate or propylene carbonate. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 222-233	2.8	12
77	Homeotropic alignment of liquid crystals on ITO surface using LBL assembly. <i>Journal of the Society for Information Display</i> , 2018 , 26, 413-418	2.1	1
76	Solid-liquid equilibria and thermo-physical properties of liquid electrolyte systems for lithium ion batteries. <i>Fluid Phase Equilibria</i> , 2018 , 473, 138-144	2.5	1
75	Isothermal vapor-liquid equilibria, excess molar volume and the deviation of refractive indices for binary mixtures of 1-butanol, 1-hexanol, 3-methyl-1-butanol and butyl acetate. <i>Fluid Phase Equilibria</i> , 2017 , 436, 47-54	2.5	6

(2012-2017)

74	Density, refractive index and kinematic viscosity of MIPK, MEK and phosphonium-based ionic liquids and the excess and deviation properties of their binary systems. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 214-224	2.8	8
73	The selectivity of imidazolium-based ionic liquids with different anions to BTX aromatics in hexane at 298.15 K and atmospheric pressure. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 2982-2989	2.8	7
72	LiquidIquid equilibria in the ternary systems {hexadecane+BTX aromatics+2-methoxyethanol or acetonitrile} at 298.15K. <i>Fluid Phase Equilibria</i> , 2015 , 389, 9-15	2.5	9
71	The solidliquid equilibrium, excess molar volume and refractive deviation properties of binary systems containing dimethyl carbonate, anisole and phenol. <i>Fluid Phase Equilibria</i> , 2014 , 383, 21-26	2.5	6
70	Ternary liquid II quid equilibria and binary excess and deviation properties at constant temperature for mixtures of dimethyl carbonate, anisole, methanol, phenol and water. <i>Fluid Phase Equilibria</i> , 2014 , 378, 93-101	2.5	5
69	Liquid Diquid Equilibria for Ternary Mixtures of Methylphenyl Carbonate, Dimethyl Carbonate, Diphenyl Carbonate, Anisole, Methanol, Phenol, and Water at Several Temperatures. <i>Journal of Chemical & Data</i> , 2014, 59, 323-328	2.8	18
68	SolidIliquid Equilibria, Excess Molar Volumes, and Deviations in the Molar Refractivity for the Binary Systems of Alamine 304-1 + Decane, Dodecane, or Dodecanol. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 289-294	2.8	7
67	SolidIquid equilibrium and mixture properties for the binary systems of Alamine 336 with decane, dodecane, and 1-dodecanol. <i>Fluid Phase Equilibria</i> , 2014 , 361, 130-134	2.5	6
66	Liquid I quid equilibria for ternary mixtures of methyl tert-butyl ether, ethyl tert-butyl ether, water and imidazolium-based ionic liquids at 298.15 K. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 3292-3296	6.3	16
65	Solid I quid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol. <i>Fluid Phase Equilibria</i> , 2014 , 376, 105-110	2.5	18
64	Azeotrope breaking for the system ethyl tert-butyl ether (ETBE)+ethanol at 313.15K and excess properties at 298.15K for mixtures of ETBE and ethanol with phosphonium-based ionic liquids. <i>Fluid Phase Equilibria</i> , 2013 , 344, 32-37	2.5	14
63	Isobaric vaporliquid equilibrium at 101.3 kPa and excess properties at 298.15 K for binary mixtures of methyl phenyl carbonate with methanol or dimethyl carbonate. <i>Fluid Phase Equilibria</i> , 2013 , 360, 260	- 2 64	4
62	Liquid I quid equilibria at 298.15 K for ternary mixtures of methyl tert-butyl ether + methanol (or ethanol) + imidazolium-based ionic liquids at atmospheric pressure. Fluid Phase Equilibria, 2013, 342, 82-87	2.5	11
61	Liquid I quid equilibria, excess molar volume and deviations of the refractive indices at 298.15K for mixtures of solvents used in the molybdenum extraction process. Fluid Phase Equilibria, 2013, 354, 59-6	5 ^{2.5}	13
60	Liquid I quid equilibria for the pseudo-ternary system {aqueous sulfuric acid solution+methyl ethyl ketone or methyl isopropyl ketone+phosphonium-based ionic liquids} at 298.15K and atmospheric pressure. Fluid Phase Equilibria, 2013, 358, 1-6	2.5	2
59	LiquidIIquid equilibria for aqueous sulfuric acid solutions with undecane, dodecane, or 1-dodecanol, trioctylamine or tributyl phosphate and excess and deviation properties for sub-binary systems at 298.15 K. <i>Fluid Phase Equilibria</i> , 2013 , 343, 36-42	2.5	10
58	Liquid II quid equilibria for ternary systems of dimethyl carbonate+C1 II 4 alcohols+water at 298.15K and atmospheric pressure. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 499-503	6.3	35
57	Numerical analysis of flow distribution for combined weapon system in environmental tester. Journal of Mechanical Science and Technology, 2012 , 26, 3339-3345	1.6	1

56	Density, refractive index, excess molar volumes and deviations in molar refraction at 298.15 K for binary and ternary mixtures of DIPE (OR TAME) + 1-methanol (or 1-propanol) + trihexyltetra-decylphosphonium bis (2,4,4-trimethylpentyl) phosphinate. <i>Canadian</i>	2.3	9
55	The liquid I quid equilibria for low pH aqueous acid solution+tri-octylamine (or tri-butylphosphate)+1-decane and the binary and ternary excess molar volumes and deviations of the refractive indices. <i>Fluid Phase Equilibria</i> , 2012 , 314, 7-12	2.5	8
54	Solid I Iquid equilibrium, excess molar volume, and deviations in the molar refractivity for the binary and ternary mixtures of Alamine 304-1 with 1-octanol, 2-octanol, and 1-decanol. <i>Fluid Phase Equilibria</i> , 2012 , 324, 44-49	2.5	5
53	Vapor I Iquid equilibria at 333.15K and excess molar volumes and deviations in molar refractivity at 298.15K for mixtures of diisopropyl ether, ethanol and ionic liquids. <i>Fluid Phase Equilibria</i> , 2011 , 309, 145-145	2.5	4
52	Liquid II quid equilibria of ternary mixtures of dimethyl carbonate, diphenyl carbonate, phenol and water at 358.15 K. <i>Fluid Phase Equilibria</i> , 2011 , 301, 18-21	2.5	23
51	Liquid Liquid Equilibrium, Solid Liquid Equilibrium, Densities, and Refractivity of a Water, Chloroform, and Acetylacetone Mixture. <i>Journal of Chemical & Chemical &</i>	303 ⁸	6
50	Phase Equilibrium and Physical Properties for the Purification of Propylene Carbonate (PC) and EButyrolactone (GBL). <i>Journal of Chemical & Empire Engineering Data</i> , 2011 , 56, 89-96	2.8	53
49	Isothermal vapor I Iquid equilibrium at T = 333.15 K and excess volumes and molar refractivity deviation at T = 298.15 K for the ternary mixtures {di-methyl carbonate (DMC) + ethanol + benzene} and {DMC + ethanol + toluene}. <i>Fluid Phase Equilibria</i> , 2011 , 303, 150-156	2.5	13
48	Isothermal Vaporliquid Equilibrium Data at T = 333.15 K and Excess Molar Volumes and Refractive Indices at T = 298.15 K for the Dimethyl Carbonate + Methanol and Isopropanol + Water with Ionic Liquids. <i>Journal of Chemical & Data</i> , 2010, 55, 2474-2481	2.8	33
47	Isothermal Vaporliquid Equilibrium at 333.15 K and Excess Volumes and Molar Refractivity Deviation at 298.15 K for Binary System Dibutyl Ether (DBE) + 2,2,4-Trimethylpentane and for Ternary System DBE + Ethanol + 2,2,4-Trimethylpentane. <i>Journal of Chemical & Description</i>	2.8	6
46	(Liquid + Liquid) Equilibrium for (N,N-Dimethylformamide (DMF) + Hexadecane) at Temperatures between (293.15 and 313.15) K and Ternary Mixtures of (DMF + Hexadecane) with Either Quinoline, or Pyridine, or Pyrrole, or Aniline, or Indole at T = 298.15 K. <i>Journal of Chemical & Discourse (Liquid & Discourse)</i>	2.8	17
45	Data, 2010 , 55, 1266-1270 Solid[liquid Equilibria, Excess Molar Volumes, and Molar Refractivity Deviations for Extractive Solvents of Molybdenum. <i>Journal of Chemical & Data</i> , 2010 , 55, 1179-1185	2.8	18
44	SLE and LLE for tri-butylphosphate or tri-octylamine contained systems; extractive solvents of Molybdenum. <i>Fluid Phase Equilibria</i> , 2010 , 295, 172-176	2.5	9
43	Excess molar volumes and deviations of refractive indices at 298.15K for binary and ternary mixtures with pyridine or aniline or quinoline. <i>Journal of Industrial and Engineering Chemistry</i> , 2010 , 16, 200-206	6.3	26
42	Liquid l iquid equilibrium for binary and ternary systems containing di-isopropyl ether (DIPE) and an imidazolium-based ionic liquid at different temperatures. <i>Fluid Phase Equilibria</i> , 2010 , 299, 294-299	2.5	12
41	Binary and Ternary Vapor l liquid Equilibrium at 323.15 K and Excess Molar Volumes at 298.15 K for the Mixtures of Propyl Vinyl Ether + 1-Propanol + Toluene. <i>Journal of Chemical & Data</i> , 2009, 54, 1041-1045	2.8	5
40	Isothermal vaporliquid equilibrium at 333.15 K and excess molar volumes and refractive indices at 298.15 K for the mixtures of di-methyl carbonate, ethanol and 2,2,4-trimethylpentane. <i>Fluid Phase Equilibria</i> , 2009 , 276, 142-149	2.5	21
39	Isothermal vaporliquid equilibrium at 333.15K, excess molar volumes and refractive indices at 298.15K for mixtures of tert-amyl methyl ether+ethanol+2,2,4-trimethylpentane. Fluid Phase Fauilibria 2009, 281, 5-11	2.5	17

38	Binary Liquid Diquid Equilibrium (LLE) for N-Methylformamide (NMF) + Hexadecane between (288.15 and 318.15) K and Ternary LLE for Systems of NMF + Heterocyclic Nitrogen Compounds + Hexadecane at 298.15 K. <i>Journal of Chemical & Data</i> , 2009, 54, 78-82	2.8	20
37	Isothermal Vaporlliquid Equilibrium at 333.15 K and Excess Molar Volumes, Refractive Indices, and Excess Molar Enthalpies at 303.15 K for the Binary and Ternary Mixtures of Di-isopropyl Ether, Ethanol, and 2,2,4-Trimethylpentane. <i>Journal of Chemical & Amp; Engineering Data</i> , 2009, 54, 3051-3058	2.8	16
36	Liquid Diquid Equilibrium for Ternary Systems of Propyl Vinyl Ether + C3 or C4 Alcohols + Water at 298.15 K and Excess Molar Enthalpies for Ternary and Constituent Binary Systems of Propyl Vinyl Ether + Ethanol + Isooctane at 303.15 K. <i>Journal of Chemical & Chemi</i>	2.8	5
35	Binary Liquid[liquid Equilibrium (LLE) for Methyl tert-Amyl Ether (TAME) + Water from (288.15 to 313.15) K and Ternary LLE for Systems of TAME + C1[14 Alcohols + Water at 298.15 K. <i>Journal of Chemical & Data</i> , 2008, 53, 2878-2883	2.8	8
34	Binary Liquid[liquid Equilibrium (LLE) for Dibutyl Ether (DBE) + Water from (288.15 to 318.15) K and Ternary LLE for Systems of DBE + C1 ~ C4 Alcohols + Water at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2089-2094	2.8	16
33	Excess molar volumes for titanium butoxide contained binary and ternary systems at 298.15 K. Journal of Industrial and Engineering Chemistry, 2008 , 14, 243-246	6.3	1
32	Excess molar volumes and refractive indices at 298.15 K for the binary and ternary mixtures of diisopropyl ether + ethanol + 2,2,4-trimethylpentane. <i>Journal of Industrial and Engineering Chemistry</i> , 2008 , 14, 377-381	6.3	20
31	LiquidIquid equilibria for the binary system of di-isopropyl ether (DIPE)+water in between 288.15 and 323.15K and the ternary systems of DIPE+water+C1114 alcohols at 298.15K. <i>Fluid Phase Equilibria</i> , 2008 , 269, 1-5	2.5	33
30	Excess molar enthalpies for the binary and ternary mixtures of ether compounds (di-isopropyl ether, di-butyl ether, propyl vinyl ether) with ethanol and isooctane at 298.15 K. <i>Korean Journal of Chemical Engineering</i> , 2008 , 25, 1160-1164	2.8	9
29	Isothermal vaporlīquid equilibrium at 333.15K and excess molar volumes at 298.15K for the ternary system di-isopropyl ether+n-propyl alcohol+toluene and its binary subsystems. <i>Fluid Phase Equilibria</i> , 2008 , 270, 103-108	2.5	4
28	Isothermal vaporIlquid equilibrium at 323.15K and excess molar volumes and refractive indices at 298.15K for the ternary system propyl vinyl ether+1-propanol+benzene and its binary sub-systems. <i>Fluid Phase Equilibria</i> , 2008 , 274, 73-79	2.5	14
27	Isothermal Binary and Ternary VLE for the Mixtures of Propyl Vinyl Ether + Ethanol + Isooctane at 323.15 K and VEat 293.15 K. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1118-1122	2.8	14
26	Binary LLE for Propyl Vinyl Ether (PVE) + Water, Ternary LLE for PVE + Methanol or Ethanol + Water at 298.15 K, and VE and R at 293.15 K for the Mixture of PVE + Ethanol + 2,2,4-Trimethylpentane. Journal of Chemical & Data, 2007 , 52, 2395-2399	2.8	11
25	Isothermal Vaporlliquid Equilibrium at 333.15 K, Density, and Refractive Index at 298.15 K for the Ternary Mixture of Dibutyl Ether + Ethanol + Benzene and Binary Subsystems. <i>Journal of Chemical & Mamp; Engineering Data</i> , 2007 , 52, 1018-1024	2.8	27
24	LiquidIliquid Equilibria for Binary System of Ethanol + Hexadecane at Elevated Temperature and the Ternary Systems of Ethanol + Heterocyclic Nitrogen Compounds + Hexadecane at 298.15 K. <i>Journal of Chemical & Data</i> , 2007, 52, 1919-1924	2.8	13
23	Isothermal vaporIlquid equilibrium at 303.15K and excess molar volumes at 298.15K for the ternary system of propyl vinyl ether+1-propanol+2,2,4-trimethyl-pentane and its binary sub-systems. <i>Fluid Phase Equilibria</i> , 2007 , 259, 146-152	2.5	15
22	Isothermal vaporllquid equilibrium at 333.15K and excess volumes and molar refractivity deviation at 298.15K for the ternary system di-butyl ether (1)+ethanol (2)+toluene (3) and its binary subsystems. Fluid Phase Equilibria, 2007, 262, 161-168	2.5	25
21	Isothermal Phase Equilibria and Excess Molar Enthalpies for Binary Systems with Dimethyl Ether at 323.15 K. <i>Journal of Chemical & Data</i> , 2007, 52, 1814-1818	2.8	24

20	Vaporliquid Equilibria andHEfor Binary Systems of Dimethyl Ether (DME) with C1l24Alkan-1-ols at 323.15 K and Liquidliquid Equilibria for Ternary System of DME + Methanol + Water at 313.15 K. <i>Journal of Chemical & Data</i> , 2007, 52, 230-234	2.8	25
19	Isothermal VLE and VE at 303.15 K for the Binary and Ternary Mixtures of Di-isopropyl Ether (DIPE) + 1-Propanol + 2,2,4-Trimethylpentane. <i>Journal of Chemical & Data</i> , 2007, 52, 2503-25	08 ^{2.8}	20
18	Excess Molar Volumes at 298.15 K and Isothermal Vapor Liquid Equilibria at 333.15 K for the Binary Mixtures of Dimethyl Carbonate with Benzene, Toluene,n-Heptane, and Isooctane. <i>Journal of Chemical & Data</i> , 2006, 51, 1868-1872	2.8	17
17	Measurement and Correlation of Vapor Liquid Equilibria at T = 333.15 K and Excess Molar Volumes at T = 298.15 K for Ethanol + Dimethyl Carbonate (DMC), DMC + 1-Propanol, and DMC + 1-Butanol. <i>Journal of Chemical & Dougle State S</i>	2.8	18
16	Densities and Viscosities for the Ternary Systems of Methyl tert-Butyl Ether + Methanol + Benzene and Methyl tert-Butyl Ether + Methanol + Toluene and Their Sub-binary Systems at 298.15 K. <i>Journal of Chemical & Data</i> , 2006 , 51, 1339-1344	2.8	24
15	Solubility of Organic Systems Containing 1,4-Dioxan-2-one. <i>Journal of Chemical & Data</i> , 2006 , 51, 1182-1184	2.8	
14	Vapor l iquid equilibrium, densities and viscosities for the binary system exo- and endo-tetrahydrodicyclopentadiene and pure component vapor pressures. <i>Fluid Phase Equilibria</i> , 2006 , 249, 187-191	2.5	11
13	Vaporliquid Equilibria for the Ternary Systems of Methyltert-Butyl Ether + Methanol + Methylcyclohexane and Methyltert-Butyl Ether + Methanol +n-Heptane and Constituent Binary Systems at 313.15 K. <i>Journal of Chemical & Data</i> , Engineering Data, 2005, 50, 1564-1569	2.8	10
12	Excess Molar Volumes and Viscosity Deviations for the Ternary System N,N-Dimethylformamide + N-Methylformamide + Water and the Binary Subsystems at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1951-1955	2.8	45
11	Vapor l lquid equilibria for the ternary systems of methyl tert-butyl ether + methanol + benzene and methyl tert-butyl ether + methanol + toluene and constituent binary systems at 313.15 K. <i>Fluid Phase Equilibria</i> , 2003 , 209, 215-228	2.5	19
10	Isothermal vaporliquid equilibria and excess molar volumes for the ternary mixtures containing 2-methyl pyrazine. <i>Fluid Phase Equilibria</i> , 2002 , 193, 109-121	2.5	7
9	LiquidIIquid equilibria for methanol + hexadecane + heterocyclic nitrogen-containing compounds at 298.15 K. <i>Fluid Phase Equilibria</i> , 2002 , 193, 217-227	2.5	42
8	Vaporllquid equilibria and excess properties for methyl tert-butyl ether (MTBE) containing binary systems. <i>Fluid Phase Equilibria</i> , 2002 , 200, 399-409	2.5	54
7	Isothermal vaporliquid equilibria and excess molar volumes for 2-methyl pyrazine (2MP) containing binary mixtures. <i>Fluid Phase Equilibria</i> , 2001 , 180, 361-373	2.5	42
6	Tracking the distribution of organic compounds using fugacity model. <i>Korean Journal of Chemical Engineering</i> , 2000 , 17, 12-16	2.8	2
5	Fractionation of Aromatic Heavy Oil by Dynamic Supercritical Fluid Extraction. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4897-4900	3.9	9
4	Isothermal Vaporlliquid Equilibria at 333.15 K and Excess Molar Volumes at 298.15 K of Ethyltert-Butyl Ether (ETBE) + Alcoh-1-ol (C1ll4) Mixtures. <i>Journal of Chemical & Data</i> , 1998 , 43, 1009-1013	2.8	69
3	Isothermal Vaporliquid Equilibria of 2-Methoxy-2-methylbutane (TAME) + n-Alcohol (C1🗹4) Mixtures at 323.15 and 333.15 K. <i>Journal of Chemical & Data</i> , 1997, 42, 517-522	2.8	40

LIST OF PUBLICATIONS

Vapor-liquid equilibria and excess molar properties of MTBE + methanol and + ethanol mixtures.

Korean Journal of Chemical Engineering, **1995**, 12, 110-114

2.8 19

Excess molar volumes at the 308.15 K for constituent binaries of n-decane, n-dodecane, 1-decanol and 1-dodecanol. *Korean Journal of Chemical Engineering*, **1995**, 12, 152-155

2.8

4