
Jennifer L Schaefer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society, 2014, 136, 7395-7402.	6.6	746
2	25th Anniversary Article: Polymer–Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage. Advanced Materials, 2014, 26, 201-234.	11.1	244
3	High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chemistry of Materials, 2013, 25, 834-839.	3.2	180
4	Nanoscale Organic Hybrid Electrolytes. Advanced Materials, 2010, 22, 3677-3680.	11.1	153
5	Ionic liquid-nanoparticle hybrid electrolytes. Journal of Materials Chemistry, 2012, 22, 4066.	6.7	131
6	Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability. ACS Applied Materials & Interfaces, 2016, 8, 13437-13448.	4.0	108
7	lonic Liquid-Tethered Nanoparticle Suspensions: A Novel Class of Ionogels. Chemistry of Materials, 2012, 24, 1386-1392.	3.2	106
8	Electrolytes for high-energy lithium batteries. Applied Nanoscience (Switzerland), 2012, 2, 91-109.	1.6	84
9	Nanoporous hybrid electrolytes. Journal of Materials Chemistry, 2011, 21, 10094.	6.7	78
10	Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synthesis and ion transport characterization. Polymer Chemistry, 2020, 11, 461-471.	1.9	56
11	Review—Polymer Electrolytes for Magnesium Batteries: Forging Away from Analogs of Lithium Polymer Electrolytes and Towards the Rechargeable Magnesium Metal Polymer Battery. Journal of the Electrochemical Society, 2020, 167, 070545.	1.3	51
12	Ion Transport in Solvent-Free, Crosslinked, Single-Ion Conducting Polymer Electrolytes for Post-Lithium Ion Batteries. Batteries, 2018, 4, 28.	2.1	40
13	Enhanced Li ⁺ Conduction within Single-Ion Conducting Polymer Gel Electrolytes via Reduced Cation–Polymer Interaction. , 2020, 2, 272-279.		39
14	Cross-Linked Ionomer Gel Separators for Polysulfide Shuttle Mitigation in Magnesium–Sulfur Batteries: Elucidation of Structure–Property Relationships. Macromolecules, 2018, 51, 8629-8636.	2.2	38
15	Electrochemical Properties and Speciation in Mg(HMDS) ₂ -Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature. Langmuir, 2017, 33, 9426-9433.	1.6	37
16	Review—Electrolyte and Electrode Designs for Enhanced Ion Transport Properties to Enable High Performance Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090501.	1.3	33
17	Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Applied Energy Materials, 2020, 3, 8871-8881.	2.5	30
18	Dynamics and Rheology of Soft Colloidal Glasses. ACS Macro Letters, 2015, 4, 119-123.	2.3	29

JENNIFER L SCHAEFER

#	Article	IF	CITATIONS
19	Self-discharge of magnesium–sulfur batteries leads to active material loss and poor shelf life. Energy and Environmental Science, 2021, 14, 890-899.	15.6	29
20	Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li-S batteries. MRS Communications, 2015, 5, 353-364.	0.8	26
21	Application of Single-Ion Conducting Gel Polymer Electrolytes in Magnesium Batteries. ACS Applied Energy Materials, 2019, 2, 6355-6363.	2.5	24
22	Conditioning-Free Electrolytes for Magnesium Batteries Using Sufone–Ether Mixtures with Increased Thermal Stability. Chemistry of Materials, 2018, 30, 3971-3974.	3.2	22
23	The Influence of Interfacial Chemistry on Magnesium Electrodeposition in Non-nucleophilic Electrolytes Using Sulfone-Ether Mixtures. Frontiers in Chemistry, 2019, 7, 194.	1.8	22
24	Comparison of Single-Ion Conducting Polymer Gel Electrolytes for Sodium, Potassium, and Calcium Batteries: Influence of Polymer Chemistry, Cation Identity, Charge Density, and Solvent on Conductivity. Batteries, 2020, 6, 11.	2.1	22
25	Investigation of the Effects of Copper Nanoparticles on Magnesium–Sulfur Battery Performance: How Practical Is Metallic Copper Addition?. ACS Applied Energy Materials, 2019, 2, 6800-6807.	2.5	20
26	Electrochemical Immunosensing of Interleukin-6 in Human Cerebrospinal Fluid and Human Serum as an Early Biomarker for Traumatic Brain Injury. ACS Measurement Science Au, 2021, 1, 65-73.	1.9	17
27	Gel composite electrolyte – an effective way to utilize ceramic fillers in lithium batteries. Journal of Materials Chemistry A, 2021, 9, 6555-6566.	5.2	14
28	Ion Coordination and Transport in Magnesium Polymer Electrolytes Based on Polyester-co-Polycarbonate. Energy Material Advances, 2021, 2021, .	4.7	12
29	Editors' Choice Communication—Comparison of Nanoscale Focused Ion Beam and Electrochemical Lithiation in <i>β</i> -Sn Microspheres. Journal of the Electrochemical Society, 2016, 163, A1010-A1012.	1.3	11
30	Resilient hollow fiber nanofiltration membranes fabricated from crosslinkable phase-separated copolymers. Molecular Systems Design and Engineering, 2020, 5, 943-953.	1.7	8
31	Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries. Electronic Materials, 2021, 2, 154-173.	0.9	8
32	Dual Cation Exchanged Poly(ionic liquid)s as Magnesium Conducting Electrolytes. ACS Applied Polymer Materials, 2019, 1, 2907-2913.	2.0	7
33	Tunable mesoporous films from copolymers with degradable side chains as membrane precursors. Journal of Membrane Science, 2018, 567, 104-114.	4.1	6
34	Stability and Disproportionation of Magnesium Polysulfides and the Effects on the Mg-Polysulfide Flow Battery. Journal of the Electrochemical Society, 2021, 168, 110516.	1.3	6
35	Polymer Morphological Effect on Gas Transport within Triptycene-Based Polysulfones. ACS Applied Polymer Materials, 2022, 4, 2987-2998.	2.0	4
36	Influence of Inorganic Glass Ceramic Particles on Ion States and Ion Transport in Composite Single-Ion Conducting Gel Polymer Electrolytes with Varying Chain Chemistry. ACS Applied Polymer Materials, 2022, 4, 1095-1109.	2.0	2

#	Article	IF	CITATIONS
37	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
38	Chemistryâ€Performance Relationships of Polymer Gelâ€Electrolytes for Mgâ^'S and Liâ^'S Batteries: Influence of Network Cation Solvation Capacity on Polymerâ€Polysulfide Interactions. ChemPhysChem, 2022, 23, .	1.0	2
39	Toward High-Energy Batteries: High-Voltage Stability via Superstructure Control. Joule, 2020, 4, 296-298.	11.7	1
40	Phase Behavior and Ionic Conductivity of Blended, Ion-Condensed Electrolytes with Ordered Morphologies. Applied Sciences (Switzerland), 2022, 12, 6529.	1.3	1
41	Tunable Electrolytes for Studies On Dendrite Growth in Lithium Metal Batteries. ECS Meeting Abstracts, 2013, , .	0.0	0