

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237181/publications.pdf Version: 2024-02-01

DWII

#	Article	IF	CITATIONS
1	Model-based analysis of sulfur-based denitrification in a moving bed biofilm reactor. Environmental Technology (United Kingdom), 2022, 43, 2948-2955.	1.2	5
2	ldentifying the mechanisms of sludge reduction in the sulfidogenic oxic-settling anaerobic (SOSA) process: Side-stream sulfidogenesis-intensified sludge decay and mainstream extended aeration. Water Research, 2021, 189, 116608.	5.3	20
3	Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system. Water Research, 2021, 190, 116716.	5.3	42
4	Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. Water Research, 2021, 193, 116905.	5.3	65
5	Electrochemical pretreatment (EPT) of waste activated sludge: Extracellular polymeric substances matrix destruction, sludge solubilisation and overall digestibility. Bioresource Technology, 2021, 330, 125000.	4.8	27
6	Development of a kinetic model to evaluate thiosulfate-driven denitrification and anammox (TDDA) process. Water Research, 2021, 198, 117155.	5.3	21
7	Anaerobic self-forming dynamic membrane bioreactors (AnSFDMBRs) for wastewater treatment – Recent advances, process optimization and perspectives. Bioresource Technology, 2021, 332, 125101.	4.8	29
8	Life cycle assessment of deploying sludge minimization with (sulfidogenic-)oxic-settling-anaerobic configurations in sewage-sludge management systems. Bioresource Technology, 2021, 335, 125266.	4.8	14
9	Anaerobic digestion of saline waste activated sludge and recovering raw sulfated polysaccharides. Bioresource Technology, 2021, 335, 125255.	4.8	11
10	Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. Bioresource Technology, 2020, 297, 122396.	4.8	37
11	Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment. Bioresource Technology, 2020, 297, 122397.	4.8	15
12	Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(III) in saline wastewater treatment under low temperature. Bioresource Technology, 2020, 295, 122292.	4.8	30
13	Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion. Bioresource Technology, 2020, 297, 122423.	4.8	43
14	Rational design of sulfidogenic granular sludge reactor with clostridia as dominant bacteria for energy-efficient sulfate-laden wastewater treatment. Bioresource Technology, 2020, 317, 124017.	4.8	7
15	Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process. Bioresource Technology, 2019, 291, 121871.	4.8	4
16	Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. Water Research, 2019, 163, 114854.	5.3	68
17	Multiple-cycle operation of sulphur-cycle-enhanced biological phosphorus removal to maintain stable performance at high temperatures. Bioresource Technology, 2019, 289, 121736.	4.8	9
18	Intracellularly stored polysulfur maintains homeostasis of pH and provides bioenergy for phosphorus metabolism in the sulfur-associated enhanced biological phosphorus removal (SEBPR) process. Chemosphere, 2019, 235, 211-219.	4.2	4

D Wu

#	Article	IF	CITATIONS
19	Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Water Research, 2019, 162, 246-257.	5.3	39
20	A new sulfidogenic oxic-settling anaerobic (SOSA) process: The effects of sulfur-cycle bioaugmentation on the operational performance, sludge properties and microbial communities. Water Research, 2019, 162, 30-42.	5.3	26
21	Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Water Research, 2019, 166, 115038.	5.3	49
22	Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater. Water Research, 2019, 167, 115138.	5.3	8
23	Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Applied Microbiology and Biotechnology, 2019, 103, 6023-6039.	1.7	99
24	Investigation on sulfide-oxidizing autotrophic denitrification in moving-bed biofilm reactors: An innovative approach and mechanism for the process start-up. International Biodeterioration and Biodegradation, 2019, 140, 90-98.	1.9	27
25	The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. Bioresource Technology, 2019, 283, 138-147.	4.8	59
26	Investigation of multiple polymers in a denitrifying sulfur conversion-EBPR system: The structural dynamics and storage states. Water Research, 2019, 156, 179-187.	5.3	17
27	Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresource Technology, 2019, 285, 121303.	4.8	52
28	Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong. Water Research, 2019, 154, 94-103.	5.3	41
29	Elucidating the effects of starvation and reactivation on anaerobic sulfidogenic granular sludge: Reactor performance and granular sludge transformation. Water Research, 2019, 151, 44-53.	5.3	31
30	Characterization of a new continuous gas-mixing sulfidogenic anaerobic bioreactor: Hydrodynamics and sludge granulation. Water Research, 2018, 135, 251-261.	5.3	18
31	Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification. Water Research, 2018, 133, 165-172.	5.3	84
32	Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification. Water Science and Technology, 2018, 77, 1027-1034.	1.2	15
33	Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance. Water Research, 2018, 141, 9-18.	5.3	22
34	Sludge flotation, its causes and control in granular sludge upflow reactors. Applied Microbiology and Biotechnology, 2018, 102, 6383-6392.	1.7	25
35	Spatiotemporal heterogeneity of core functional bacteria and their synergetic and competitive interactions in denitrifying sulfur conversion-assisted enhanced biological phosphorus removal. Scientific Reports, 2017, 7, 10927.	1.6	17
36	Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance. Water Research, 2017, 123, 687-695.	5.3	18

D Wu

#	Article	IF	CITATIONS
37	Optimizing mixing mode and intensity to prevent sludge flotation in sulfidogenic anaerobic sludge bed reactors. Water Research, 2017, 122, 481-491.	5.3	29
38	Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration. Water Research, 2016, 95, 289-299.	5.3	44
39	Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification intrification integrated (SANI®) process in saline sewage treatment. Water Research, 2016, 100, 496-507.	5.3	142
40	Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process. Water Research, 2016, 103, 444-452.	5.3	24
41	Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. Water Research, 2014, 49, 251-264.	5.3	67
42	A new biological phosphorus removal process in association with sulfur cycle. Water Research, 2013, 47, 3057-3069.	5.3	42
43	Phosphorus release and uptake during start-up of a covered and non-aerated sequencing batch reactor with separate feeding of VFA and sulfate. Water Science and Technology, 2012, 65, 840-844.	1.2	7