Alexander S Kuprin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237138/publications.pdf

Version: 2024-02-01

18 papers	276 citations	9 h-index	1199594 12 g-index
18	18	18	265
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Structural, mechanical and tribological properties of Cr-V-N coatings deposited by cathodic arc evaporation. Tribology International, 2022, 165, 107246.	5.9	12
2	Structure and Properties of ZrON Coatings Synthesized by Cathodic Arc Evaporation. Materials, 2021, 14, 1483.	2.9	14
3	STRUCTURE AND PROPERTIES OF FeCr, CrAl AND FeCrAl COATINGS DEPOSITED BY CATHODIC ARC EVAPORATION. , 2021, , 119-128.		1
4	Irradiation resistance of chromium coatings for ATFC in the temperature range 300–550°C. Journal of Nuclear Materials, 2021, 549, 152908.	2.7	15
5	A new MAX phases-based electroconductive coating for high-temperature oxidizing environment. Composite Structures, 2021, 277, 114649.	5.8	16
6	MECHANISMS OF RADIATION DAMAGE AND DEVELOPMENT OF STRUCTURAL MATERIALS FOR OPERATING AND ADVANCED NUCLEAR REACTORS. , 2021, , 3-20.		3
7	Effect of Metallic or Non-Metallic Element Addition on Surface Topography and Mechanical Properties of CrN Coatings. Nanomaterials, 2020, 10, 2361.	4.1	3
8	STRUCTURE AND PROPERTIES OF COATINGS BASED ON FeCrAl AND Cr18Ni10T., 2020, , 125-131.		0
9	Structure and properties of CrN coatings formed using cathodic arc evaporation in stationary system. Transactions of Nonferrous Metals Society of China, 2019, 29, 799-810.	4.2	17
10	Friction and Wear of Cr-O-N Coatings Characterized by Atomic Force Microscopy. Tribology in Industry, 2019, 41, 274-285.	1.1	5
11	DEPOSITION OF TIN-BASED COATINGS USING VACUUM ARC PLASMA IN INCREASED NEGATIVE SUBSTRATE BIAS VOLTAGE. , 2019, , 154-160.		5
12	SURFACE MORPHOLOGY AND SPUTTERING OF FeCrAl COATING ON STEEL EXPOSED TO LOW-ENERGY DEUTERIUM PLASMAS. , 2019, , 190-194.		0
13	Irradiation resistance of vacuum arc chromium coatings for zirconium alloy fuel claddings. Journal of Nuclear Materials, 2018, 510, 163-167.	2.7	55
14	Mechanical properties of Cr-O-N coatings deposited by cathodic arc evaporation. Vacuum, 2018, 156, 97-107.	3.5	34
15	Structure of CrON coatings formed in vacuum arc plasma fluxes. Surface and Coatings Technology, 2017, 309, 920-930.	4.8	42
16	Prototype Equipment and Techniques for Obtaining Địavitation-Resistant Coatings To Be Applied fo Working Surfaces of Steam Turbine Blades Made of VT6 Titanium Alloy in Order to Replace Imported Counterparts. Science and Innovation, 2016, 12, 27-35.	0.7	5
17	Deposition of chromium nitride coatings using vacuum arc plasma inÂincreased negative substrate bias voltage. Vacuum, 2015, 117, 27-34.	3.5	46
18	Influence of nitrogen pressure on silicon content in Ti-Si-N coatings deposited by the vacuum-arc method. , $2010, \ldots$		3