
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9237040/publications.pdf Version: 2024-02-01

SATOSHI FIIII

#	Article	IF	CITATIONS
1	Determining the influence of microwave-induced thermal unevenness on vanadium oxide catalyst particles. Chemical Engineering Journal, 2022, 433, 133603.	6.6	8
2	Activation of chemical reactions on solid catalysts under microwave irradiation. , 2021, , 27-69.		1
3	Reduction of metal oxides using thermogravimetry under microwave irradiation. AIP Advances, 2021, 11, .	0.6	3
4	Designing Local Microwave Heating of Metal Nanoparticles/Metal Oxide Substrate Composites. Journal of Physical Chemistry C, 2021, 125, 23720-23728.	1.5	10
5	Operando Raman Spectroscopy of the Microwave-Enhanced Catalytic Dehydration of 2-Propanol by WO3. Industrial & Engineering Chemistry Research, 2020, 59, 1781-1788.	1.8	8
6	Ultra-fast pyrolysis of lignocellulose using highly tuned microwaves: synergistic effect of a cylindrical cavity resonator and a frequency-auto-tracking solid-state microwave generator. Green Chemistry, 2020, 22, 342-351.	4.6	26
7	Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS. Communications Chemistry, 2020, 3, .	2.0	26
8	Real-Time Facile Detection of the WO ₃ Catalyst Oxidation State under Microwaves Using a Resonance Frequency. ACS Omega, 2020, 5, 31957-31962.	1.6	6
9	Insights into the Dielectric-Heating-Enhanced Regeneration of CO ₂ -Rich Aqueous Amine Solutions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13593-13599.	3.2	12
10	Hole Accumulation at the Grain Boundary Enhances Water Oxidation at α-Fe ₂ O ₃ Electrodes under a Microwave Electric Field. Journal of Physical Chemistry C, 2020, 124, 7749-7759.	1.5	10
11	A Facile Formation of Vanadium(0) by the Reduction of Vanadium Pentoxide Pelletized with Magnesium Oxide Enabled by Microwave Irradiation. ChemistrySelect, 2020, 5, 2949-2953.	0.7	5
12	Microwave Irradiation Process for Al–Sc Alloy Production. Scientific Reports, 2020, 10, 2689.	1.6	8
13	Diamond SAW Resonator. , 2020, , .		1
14	Radio frequency alternating electromagnetic field enhanced tetraruthenium polyoxometalate electrocatalytic water oxidation. Chemical Communications, 2019, 55, 1032-1035.	2.2	8
15	Enhancement of Fixed-bed Flow Reactions under Microwave Irradiation by Local Heating at the Vicinal Contact Points of Catalyst Particles. Scientific Reports, 2019, 9, 222.	1.6	62
16	<i>In situ</i> Raman monitoring of dielectric-heating-enhanced freeze-drying under different electromagnetic wave frequencies. RSC Advances, 2019, 9, 9001-9005.	1.7	3
17	A Compact Low Power Al Module Mounted on Drone for Plant Monitor System. , 2019, , .		2
10	Dadia link design for ITS integrated natural using drang. 2010		

0

#	Article	IF	CITATIONS
19	One-port SAW resonator on diamond made of isotopically enriched 12C. , 2019, , .		Ο
20	Study on Metal Smelting Process Under Microwave Irradiation. Minerals, Metals and Materials Series, 2018, , 171-172.	0.3	0
21	Physical Insight to Microwave Special Effects: Nonequilibrium Local Heating and Acceleration of Electron Transfer. Journal of the Japan Petroleum Institute, 2018, 61, 98-105.	0.4	15
22	Drones' communication in an ITS network. , 2018, , .		1
23	Diamond SAW Resonators Made by Minimal-Fab Process. , 2018, , .		1
24	Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating. Materials, 2018, 11, 169.	1.3	4
25	Microwave-Driven Biorefinery for Utilization of Food and Agricultural Waste Biomass. , 2018, , 393-408.		9
26	Proton-Enhanced Dielectric Properties of Polyoxometalates in Water under Radio-Frequency Electromagnetic Waves. Materials, 2018, 11, 1202.	1.3	9
27	Smelting Magnesium Metal using a Microwave Pidgeon Method. Scientific Reports, 2017, 7, 46512.	1.6	37
28	Deposition of ScAIN thin film using RF-sputtering method. AIP Conference Proceedings, 2017, , .	0.3	0
29	Electromagnetic and Heat-Transfer Simulation of the Catalytic Dehydrogenation of Ethylbenzene under Microwave Irradiation. Industrial & Engineering Chemistry Research, 2017, 56, 7685-7692.	1.8	27
30	Integration of drones' communication into an ITS network. , 2017, , .		2
31	Microwave-Assisted Water Extraction of Carbohydrates From Unutilized Biomass. , 2017, , 199-219.		4
32	Fabrication of SAW resonators on single-crystal diamonds using Minimal-Fab process. , 2017, , .		0
33	Fabrication of SAW resonators on single-crystal diamonds using Minimal-Fab process. , 2017, , .		0
34	Smelting of Scandium by Microwave Irradiation. Materials, 2017, 10, 1138.	1.3	2
35	Microwave-Induced Biomass Fractionation. , 2016, , 103-126.		7

36 Study on metal refining process of Sc metal using by microwave irradiation. , 2016, , .

#	Article	IF	CITATIONS
37	Injection-Locked Magnetron Using a Cross-Domain Analyzer. IEEE Microwave and Wireless Components Letters, 2016, 26, 966-968.	2.0	11
38	Enhancement of anodic current attributed to oxygen evolution on α-Fe2O3 electrode by microwave oscillating electric field. Scientific Reports, 2016, 6, 35554.	1.6	8
39	Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate. AIP Advances, 2015, 5, .	0.6	20
40	Sputter deposition of ScAlN using large size alloy target with high Sc content and reduction of Sc content in deposited films. Japanese Journal of Applied Physics, 2015, 54, 07HD06.	0.8	14
41	Microwave-enhanced photocatalysis on CdS quantum dots - Evidence of acceleration of photoinduced electron transfer. Scientific Reports, 2015, 5, 11308.	1.6	25
42	Highly c-axis-oriented ScAlN thin films deposited using Sc-Al alloy target. , 2015, , .		4
43	Deposition of highly c-axis-oriented ScAlN thin films by RF magnetron sputtering using a Sc-Al alloy target. , 2014, , .		2
44	Chemical Reaction under Highly Precise Microwave Irradiation. Journal of Microwave Power and Electromagnetic Energy, 2014, 48, 89-103.	0.4	7
45	One-port SAW resonators fabricated on single-crystal diamond. , 2013, , .		8
46	Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 986-992.	1.7	40
47	Methanol decomposition reaction using Pd/C as solid catalyst under highly precise microwave irradiation. , 2012, , .		2
48	High-frequency SAW filters based on diamond films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2758-2764.	1.7	18
49	Low propagation loss in a one-port resonator fabricated on single-crystal diamond. , 2011, , .		4
50	Highâ€frequency surface acoustic wave filter based on diamond thin film. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1072-1077.	0.8	19
51	A diamond substrate suitable for 5GHz SAW device application. , 2010, , .		1
52	Characterization of ZnO polycrystalline films on silica glass by the LFB ultrasonic material characterization system. , 2009, , .		0
53	Fabrication of a film bulk acoustic wave resonator from nano-crystalline diamond. Diamond and Related Materials, 2009, 18, 253-257.	1.8	7
54	Development of a 6GHz resonator by using an AlN diamond structure. , 2008, , .		3

#	Article	IF	CITATIONS
55	P5I-4 Diamond Saw Resonators With SiO2/ZnO/IDT/ZnO/Diamond Structure. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	2
56	Promoting Public Transport Using Marketing Techniques in Mobility Management and Verifying their Quantitative Effects. Transportation, 2007, 34, 37-49.	2.1	58
57	Development of PLL Module with Diamond SAW Resonator. , 2006, , .		0
58	Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1817-1822.	1.7	22
59	Diamond-based surface acoustic wave devices. Semiconductor Science and Technology, 2003, 18, S96-S104.	1.0	54
60	Equivalent Circuit Parameters of Surface-Acoustic-Wave Interdigital Transducers for ZnO/Diamond and SiO2/ZnO/Diamond Structures. Japanese Journal of Applied Physics, 2002, 41, 3489-3493.	0.8	1
61	Low-Loss Diamond Surface Acoustic Wave Devices Using Small-Grain Poly-Crystalline Diamond. Japanese Journal of Applied Physics, 2002, 41, 3476-3479.	0.8	20
62	Novel self-assembled monolayers of disulfides with bicyclo[2.2.2]octane moieties on Au(111). Chemical Communications, 2001, , 1688-1689.	2.2	23
63	Defects in synthesized and natural diamond probed by positron annihilation. Journal of Physics Condensed Matter, 1999, 11, 4109-4122.	0.7	8
64	Annealing behaviours of defects in electron-irradiated diamond probed by positron annihilation. Journal of Physics Condensed Matter, 1999, 11, 4925-4934.	0.7	10
65	10 GHz narrow band SAW filters using diamond. , 1999, , .		16
66	Study on Surface Acoustic Wave Characteristics of SiO2/Interdigital-Transducer/ZnO/Diamond Structure and Fabrication of 2.5 GHz Narrow Band Filter. Japanese Journal of Applied Physics, 1998, 37, 2918-2922.	0.8	52
67	Defects in the Ti/GaAs system probed by monoenergetic positron beams. Journal of Physics Condensed Matter, 1997, 9, 6827-6835.	0.7	2
68	High power durability of diamond surface acoustic wave filter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, 1395-1400.	1.7	47
69	Study of various types of diamonds by measurements of double crystal xâ€ray diffraction and positron annihilation. Journal of Applied Physics, 1995, 78, 1510-1513.	1.1	21
70	Vacancy-Type Defects in Ion-Implanted Diamonds Probed by Monoenergetic Positron Beams. Japanese Journal of Applied Physics, 1995, 34, 1772-1777.	0.8	17
71	Characterization of Metal/GaAs Interfaces by Monoenergetic Positron Beam. Japanese Journal of Applied Physics, 1995, 34, 5505-5509.	0.8	2
72	Theoretical study on SAW characteristics of layered structures including a diamond layer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 362-375.	1.7	195

10

#	Article	IF	CITATIONS
73	Characterization of diamond single crystals by means of double-crystal X-ray diffraction and positron annihilation. Applied Physics A: Materials Science and Processing, 1995, 61, 331-333.	1.1	6
74	Characterization of diamond single crystals by means of double-crystal X-ray diffraction and positron annihilation. Applied Physics A: Materials Science and Processing, 1995, 61, 331-333.	1.1	2
75	Point defects in As-grown and ion implanted GaAs probed by a monoenergetic positron beam. AIP Conference Proceedings, 1994, , .	0.3	0
76	Charge state and diffusivity of muonium inn-type GaAs. Physical Review B, 1994, 50, 1999-2002.	1.1	34
77	Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering. Applied Physics Letters, 1994, 65, 2556-2558.	1.5	85
78	Quantum diffusion of muonium in GaAs with shallow donor impurities. Hyperfine Interactions, 1994, 85, 79-84.	0.2	2
79	The study of native defects in as-grown GaAs by positron annihilation. Hyperfine Interactions, 1993, 79, 719-723.	0.2	6
80	Effect of Annealing Method on Vacancy-Type Defects in Si-Implanted GaAs Studied by a Slow Positron Beam. Japanese Journal of Applied Physics, 1992, 31, 732-736.	0.8	5
81	Characterization of vacancyâ€ŧype defects in Seâ€ɨmplanted GaAs by means of a slow positron beam. Journal of Applied Physics, 1992, 72, 1405-1409.	1.1	3
82	SAW devices on diamond. , 0, , .		40
83	Diamond wafer for SAW application. , 0, , .		6

Low phase noise VCSO with diamond SAW resonators. , 0, , .

6