
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9236677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural insights into ring-building motif domains involved in bacterial sporulation. Journal of Structural Biology, 2022, 214, 107813.	1.3	6
2	CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Scientific Reports, 2021, 11, 7887.	1.6	7
3	The Morphogenetic Protein CotE Positions Exosporium Proteins CotY and ExsY during Sporulation of Bacillus cereus. MSphere, 2021, 6, .	1.3	9
4	Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Scientific Reports, 2020, 10, 18886.	1.6	19
5	A protein phosphorylation module patterns the <i>Bacillus subtilis</i> spore outer coat. Molecular Microbiology, 2020, 114, 934-951.	1.2	20
6	<i>Clostridioides difficile para</i> -Cresol Production Is Induced by the Precursor <i>para</i> -Hydroxyphenylacetate. Journal of Bacteriology, 2020, 202, .	1.0	12
7	From Root to Tips: Sporulation Evolution and Specialization in <i>Bacillus subtilis</i> and the Intestinal Pathogen <i>Clostridioides difficile</i> . Molecular Biology and Evolution, 2019, 36, 2714-2736.	3.5	29
8	Temporal and spatial regulation of protein cross-linking by the pre-assembled substrates of a Bacillus subtilis spore coat transglutaminase. PLoS Genetics, 2019, 15, e1007912.	1.5	6
9	A LysM Domain Intervenes in Sequential Protein-Protein and Protein-Peptidoglycan Interactions Important for Spore Coat Assembly in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2019, 201, .	1.0	18
10	Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biology and Evolution, 2018, 10, 108-124.	1.1	67
11	Autoregulation of SafA Assembly through Recruitment of a Protein Cross-Linking Enzyme. Journal of Bacteriology, 2018, 200, .	1.0	9
12	Genomic Study of a Clostridium difficile Multidrug Resistant Outbreak-Related Clone Reveals Novel Determinants of Resistance. Frontiers in Microbiology, 2018, 9, 2994.	1.5	25
13	SpoVID functions as a nonâ€competitive hub that connects the modules for assembly of the inner and outer spore coat layers in <i>Bacillus subtilis</i> . Molecular Microbiology, 2018, 110, 576-595.	1.2	14
14	lmipenem Resistance in <i>Clostridium difficile</i> Ribotype 017, Portugal. Emerging Infectious Diseases, 2018, 24, 741-745.	2.0	24
15	Albumin-binding domain from Streptococcus zooepidemicus protein Zag as a novel strategy to improve the half-life of therapeutic proteins. Journal of Biotechnology, 2017, 253, 23-33.	1.9	14
16	The SpollQâ€ S pollIAH complex of <scp><i>C</i></scp> <i>lostridium difficile</i> controls forespore engulfment and late stages of gene expression and spore morphogenesis. Molecular Microbiology, 2016, 100, 204-228.	1.2	46
17	A Fluorescent Reporter for Single Cell Analysis of Gene Expression in Clostridium difficile. Methods in Molecular Biology, 2016, 1476, 69-90.	0.4	23
18	Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Applied and Environmental Microbiology, 2016, 82, 232-243.	1.4	37

#	Article	IF	CITATIONS
19	A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile. PLoS Genetics, 2016, 12, e1006312.	1.5	42
20	Chemical shift assignments and secondary structure determination of the ectodomain of Bacillus subtilis morphogenic protein RodZ. Biomolecular NMR Assignments, 2015, 9, 285-288.	0.4	2
21	Dual-Specificity Anti-sigma Factor Reinforces Control of Cell-Type Specific Gene Expression in Bacillus subtilis. PLoS Genetics, 2015, 11, e1005104.	1.5	13
22	Rethinking the Niche of Upper-Atmosphere Bacteria: Draft Genome Sequences of Bacillus aryabhattai C765 and Bacillus aerophilus C772, Isolated from Rice Fields. Genome Announcements, 2015, 3, .	0.8	4
23	Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking. Biochemistry, 2015, 54, 5723-5734.	1.2	21
24	A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiology Letters, 2014, 358, 129-136.	0.7	29
25	Adaptive Strategies and Pathogenesis of Clostridium difficile from <i>In Vivo</i> Transcriptomics. Infection and Immunity, 2014, 82, 914-914.	1.0	2
26	The regulatory network controlling spore formation in <i>Clostridium difficile</i> . FEMS Microbiology Letters, 2014, 358, 1-10.	0.7	55
27	Sporulation during Growth in a Gut Isolate of Bacillus subtilis. Journal of Bacteriology, 2014, 196, 4184-4196.	1.0	43
28	A Conserved Cysteine Residue of Bacillus subtilis SpoIIIJ Is Important for Endospore Development. PLoS ONE, 2014, 9, e99811.	1.1	4
29	Adaptive Strategies and Pathogenesis of Clostridium difficile from <i>In Vivo</i> Transcriptomics. Infection and Immunity, 2013, 81, 3757-3769.	1.0	143
30	Genome of a Gut Strain of Bacillus subtilis. Genome Announcements, 2013, 1, .	0.8	19
31	Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile. PLoS Genetics, 2013, 9, e1003756.	1.5	167
32	The Spore Differentiation Pathway in the Enteric Pathogen Clostridium difficile. PLoS Genetics, 2013, 9, e1003782.	1.5	153
33	A Genomic Signature and the Identification of New Sporulation Genes. Journal of Bacteriology, 2013, 195, 2101-2115.	1.0	110
34	ISOLATION OF THE ANTIMICROBIAL CYCLIC PEPTIDE SUBTILOSIN A FROM A GUT-ASSOCIATED <i>BACILLUS SUBTILIS</i> STRAIN. American Journal of Biochemistry and Biotechnology, 2013, 9, 307-317.	0.1	1
35	Different Antibiotic Resistance and Sporulation Properties within Multiclonal Clostridium difficile PCR Ribotypes 078, 126, and 033 in a Single Calf Farm. Applied and Environmental Microbiology, 2012, 78, 8515-8522.	1.4	50
36	Physical Interaction between Coat Morphogenetic Proteins SpoVID and CotE Is Necessary for Spore Encasement in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 4941-4950.	1.0	30

#	Article	IF	CITATIONS
37	A Negative Feedback Loop That Limits the Ectopic Activation of a Cell Type–Specific Sporulation Sigma Factor of Bacillus subtilis. PLoS Genetics, 2011, 7, e1002220.	1.5	16
38	Display of Recombinant Proteins on <i>Bacillus subtilis</i> Spores, Using a Coat-Associated Enzyme as the Carrier. Applied and Environmental Microbiology, 2010, 76, 5926-5933.	1.4	53
39	Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis. PLoS Genetics, 2009, 5, e1000566.	1.5	93
40	RodZ, a component of the bacterial core morphogenic apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1239-1244.	3.3	156
41	Evidence for a dual role of PBP1 in the cell division and cell separation of <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 72, 895-904.	1.2	58
42	The coat morphogenetic protein SpoVID is necessary for spore encasement in <i>Bacillus subtilis</i> . Molecular Microbiology, 2009, 74, 634-649.	1.2	64
43	A Procedure for High-Yield Spore Production by Bacillus s ubtilis. Biotechnology Progress, 2008, 21, 1026-1031.	1.3	90
44	Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expression and Purification, 2008, 59, 1-8.	0.6	18
45	Determinants for the Subcellular Localization and Function of a Nonessential SEDS Protein. Journal of Bacteriology, 2008, 190, 363-376.	1.0	29
46	Processing of a Membrane Protein Required for Cell-to-Cell Signaling during Endospore Formation in Bacillus subtilis. Journal of Bacteriology, 2008, 190, 7786-7796.	1.0	15
47	CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2008, 190, 1267-1275.	1.0	34
48	A channel connecting the mother cell and forespore during bacterial endospore formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15100-15105.	3.3	88
49	Role of PBP1 in Cell Division of Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 3525-3531.	1.0	100
50	The Timing of cotE Expression Affects Bacillus subtilis Spore Coat Morphology but Not Lysozyme Resistance. Journal of Bacteriology, 2007, 189, 2401-2410.	1.0	24
51	Structure, Assembly, and Function of the Spore Surface Layers. Annual Review of Microbiology, 2007, 61, 555-588.	2.9	481
52	The Intestinal Life Cycle of Bacillus subtilis and Close Relatives. Journal of Bacteriology, 2006, 188, 2692-2700.	1.0	281
53	Requirement for the Cell Division Protein DivlB in Polar Cell Division and Engulfment during Sporulation in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 7677-7685.	1.0	12
54	Localization of the Bacillus subtilis murB Gene within the dcw Cluster Is Important for Growth and Sporulation. Journal of Bacteriology, 2006, 188, 1721-1732.	1.0	30

#	Article	IF	CITATIONS
55	Modulation of the Viral ATPase Activity by the Portal Protein Correlates with DNA Packaging Efficiency. Journal of Biological Chemistry, 2006, 281, 21914-21923.	1.6	31
56	Interaction between Coat Morphogenetic Proteins SafA and SpoVID. Journal of Bacteriology, 2006, 188, 7731-7741.	1.0	48
57	A Gene Encoding a Holin-Like Protein Involved in Spore Morphogenesis and Spore Germination in Bacillus subtilis. Journal of Bacteriology, 2005, 187, 6443-6453.	1.0	13
58	Isolation and Characterization of New Thiamine-Deregulated Mutants of Bacillus subtilis. Journal of Bacteriology, 2005, 187, 8127-8136.	1.0	48
59	Assembly and Function of a Spore Coat-Associated Transglutaminase of Bacillus subtilis. Journal of Bacteriology, 2005, 187, 7753-7764.	1.0	45
60	Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 399-420.	0.7	157
61	Screening for Bacillus Isolates in the Broiler Gastrointestinal Tract. Applied and Environmental Microbiology, 2005, 71, 968-978.	1.4	307
62	Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 23472-23476.	1.6	161
63	Assembly of Multiple CotC Forms into the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2004, 186, 1129-1135.	1.0	69
64	Role of the Anti-Sigma Factor SpolIAB in Regulation of IfG during Bacillus subtilis Sporulation. Journal of Bacteriology, 2004, 186, 4000-4013.	1.0	38
65	Assembly of an Oxalate Decarboxylase Produced under Ï f K Control into the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2004, 186, 1462-1474.	1.0	39
66	Interactions among CotB, CotG, and CotH during Assembly of the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2004, 186, 1110-1119.	1.0	77
67	Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Molecular Microbiology, 2004, 55, 349-367.	1.2	25
68	The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology, 2004, 322, 253-263.	1.1	62
69	The high-resolution functional map of bacteriophage SPP1 portal protein. Molecular Microbiology, 2004, 51, 949-962.	1.2	39
70	Characterization of Bacillus Probiotics Available for Human Use. Applied and Environmental Microbiology, 2004, 70, 2161-2171.	1.4	343
71	Expression of spollIJ in the Prespore Is Sufficient for Activation of σ G and for Sporulation in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 3905-3917.	1.0	34
72	Crystal Structure of a Bacterial Endospore Coat Component. Journal of Biological Chemistry, 2003, 278, 19416-19425.	1.6	322

5

#	Article	IF	CITATIONS
73	Molecular and Biochemical Characterization of a Highly Stable Bacterial Laccase That Occurs as a Structural Component of the Bacillus subtilis Endospore Coat. Journal of Biological Chemistry, 2002, 277, 18849-18859.	1.6	456
74	Spore-coat laccase CotA fromBacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1490-1493.	2.5	18
75	Alternative Translation Initiation Produces a Short Form of a Spore Coat Protein in Bacillus subtilis. Journal of Bacteriology, 2001, 183, 2032-2040.	1.0	27
76	Forespore-Specific Transcription of the lonB Gene during Sporulation in Bacillus subtilis. Journal of Bacteriology, 2001, 183, 2995-3003.	1.0	33
77	SpoVID Guides SafA to the Spore Coat in Bacillus subtilis. Journal of Bacteriology, 2001, 183, 3041-3049.	1.0	66
78	Morphogenetic Proteins SpoVID and SafA Form a Complex during Assembly of the Bacillus subtilis Spore Coat. Journal of Bacteriology, 2000, 182, 1828-1833.	1.0	81
79	Structure and Assembly of the Bacterial Endospore Coat. Methods, 2000, 20, 95-110.	1.9	187
80	A <i>Bacillus subtilis</i> Secreted Protein with a Role in Endospore Coat Assembly and Function. Journal of Bacteriology, 1999, 181, 3632-3643.	1.0	82
81	Assembly Requirements and Role of CotH during Spore Coat Formation in Bacillus subtilis. Journal of Bacteriology, 1999, 181, 2631-2633.	1.0	48
82	Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Molecular Microbiology, 1998, 28, 235-247.	1.2	173
83	Involvement of Superoxide Dismutase in Spore Coat Assembly in <i>Bacillus subtilis</i> . Journal of Bacteriology, 1998, 180, 2285-2291.	1.0	92
84	CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. Journal of Bacteriology, 1997, 179, 1887-1897.	1.0	97
85	cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. Journal of Bacteriology, 1997, 179, 389-398.	1.0	23
86	Assembly and interactions of cotJ â€encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Molecular Microbiology, 1997, 25, 955-966.	1.2	57
87	Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. Journal of Bacteriology, 1995, 177, 3394-3406.	1.0	101
88	Chapter 8 Cell wall changes during bacterial endospore formation. New Comprehensive Biochemistry, 1994, 27, 167-186.	0.1	23
89	A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. Biochimie, 1992, 74, 735-748.	1.3	72
90	The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Molecular Microbiology, 1990, 4, 513-517.	1.2	38

#	Article	IF	CITATIONS
91	Overview of Clostridium difficile Infection: Life Cycle, Epidemiology, Antimicrobial Resistance and Treatment. , 0, , .		9