Shouyun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9236670/publications.pdf

Version: 2024-02-01

46918 62479 6,950 105 47 80 citations h-index g-index papers 146 146 146 4296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visibleâ€Lightâ€Promoted Iminylâ€Radical Formation from Acyl Oximes: A Unified Approach to Pyridines, Quinolines, and Phenanthridines. Angewandte Chemie - International Edition, 2015, 54, 4055-4059.	7.2	326
2	Distal radical migration strategy: an emerging synthetic means. Chemical Society Reviews, 2018, 47, 654-667.	18.7	266
3	Synthesis of 6â€Alkylated Phenanthridine Derivatives Using Photoredox Neutral Somophilic Isocyanide Insertion. Angewandte Chemie - International Edition, 2013, 52, 13289-13292.	7.2	265
4	Highly Efficient Catalytic System for Enantioselective Michael Addition of Aldehydes to Nitroalkenes in Water. Angewandte Chemie - International Edition, 2008, 47, 545-548.	7.2	253
5	Visible-Light-Mediated Fluoroalkylation of Isocyanides with Ethyl Bromofluoroacetates: Unified Synthesis of Mono- and Difluoromethylated Phenanthridine Derivatives. Organic Letters, 2014, 16, 2938-2941.	2.4	228
6	Enantioselective Addition of Activated Terminal Alkynes to 1-Acylpyridinium Salts Catalyzed by Cuâ^Bis(oxazoline) Complexes. Journal of the American Chemical Society, 2007, 129, 9300-9301.	6.6	198
7	Visible-Light-Promoted Remote C(sp ³)–H Amidation and Chlorination. Organic Letters, 2015, 17, 1894-1897.	2.4	187
8	Enantioselective Allylic Alkylation with 4-Alkyl-1,4-dihydro-pyridines Enabled by Photoredox/Palladium Cocatalysis. Journal of the American Chemical Society, 2018, 140, 16914-16919.	6.6	180
9	Halogen-Bond-Promoted Double Radical Isocyanide Insertion under Visible-Light Irradiation: Synthesis of 2-Fluoroalkylated Quinoxalines. Organic Letters, 2016, 18, 4638-4641.	2.4	176
10	Direct CH Functionalization of Enamides and Enecarbamates by Using Visible‣ight Photoredox Catalysis. Chemistry - A European Journal, 2012, 18, 15158-15166.	1.7	170
11	Visible-Light-Promoted Redox Neutral C–H Amidation of Heteroarenes with Hydroxylamine Derivatives. Organic Letters, 2014, 16, 3504-3507.	2.4	157
12	Organocatalytic Michael Addition of Aldehydes to Protected 2â€Aminoâ€1â€Nitroethenes: The Practical Syntheses of Oseltamivir (Tamiflu) and Substituted 3â€Aminopyrrolidines. Angewandte Chemie - International Edition, 2010, 49, 4656-4660.	7.2	147
13	Visible-Light-Promoted and One-Pot Synthesis of Phenanthridines and Quinolines from Aldehydes and <i>O</i> -Acyl Hydroxylamine. Organic Letters, 2015, 17, 2692-2695.	2.4	139
14	Photoredox-Catalyzed Intermolecular Remote C–H and C–C Vinylation via Iminyl Radicals. Organic Letters, 2018, 20, 5523-5527.	2.4	131
15	Hydrotrifluoromethylation of Unactivated Alkenes and Alkynes Enabled by an Electron-Donor–Acceptor Complex of Togni's Reagent with a Tertiary Amine. Organic Letters, 2016, 18, 2962-2965.	2.4	130
16	Sulfonation and Trifluoromethylation of Enol Acetates with Sulfonyl Chlorides Using Visibleâ€Light Photoredox Catalysis. European Journal of Organic Chemistry, 2013, 2013, 5485-5492.	1,2	124
17	A review of enantioselective dual transition metal/photoredox catalysis. Science China Chemistry, 2020, 63, 637-647.	4.2	120
18	Radical Alkynyltrifluoromethylation of Alkenes Initiated by an Electron Donor–Acceptor Complex. Organic Letters, 2017, 19, 1240-1243.	2.4	119

#	Article	IF	CITATIONS
19	Direct Aromatic Cï£;H Trifluoromethylation via an Electronâ€Donor–Acceptor Complex. Chemistry - A European Journal, 2015, 21, 8355-8359.	1.7	110
20	Isocyanide Insertion: De Novo Synthesis of Trifluoromethylated Phenanthridine Derivatives. Organic Letters, 2013, 15, 5520-5523.	2.4	109
21	Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. Chemical Communications, 2014, 50, 6164.	2.2	109
22	<i>De Novo</i> Synthesis of Polysubstituted Naphthols and Furans Using Photoredox Neutral Coupling of Alkynes with 2-Bromo-1,3-dicarbonyl Compounds. Organic Letters, 2013, 15, 4884-4887.	2.4	100
23	Copper-Catalyzed Desymmetric Intramolecular Ullmann C–N Coupling: An Enantioselective Preparation of Indolines. Journal of the American Chemical Society, 2012, 134, 14326-14329.	6.6	97
24	Visible-light-promoted iminyl radical formation from vinyl azides: synthesis of 6-(fluoro)alkylated phenanthridines. Chemical Communications, 2016, 52, 10898-10901.	2.2	87
25	Remote C–C bond formation <i>via</i> visible light photoredox-catalyzed intramolecular hydrogen atom transfer. Organic and Biomolecular Chemistry, 2020, 18, 4519-4532.	1.5	87
26	Radical Alkylation of Imines with 4-Alkyl-1,4-dihydropyridines Enabled by Photoredox/Brønsted Acid Cocatalysis. Journal of Organic Chemistry, 2017, 82, 9995-10006.	1.7	83
27	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.	2.9	78
28	Primary, Secondary, and Tertiary γ-C(sp ³)–H Vinylation of Amides via Organic Photoredox-Catalyzed Hydrogen Atom Transfer. Organic Letters, 2018, 20, 6255-6259.	2.4	74
29	Enantioselective Radical Hydroacylation of Enals with α-Ketoacids Enabled by Photoredox/Amine Cocatalysis. Organic Letters, 2019, 21, 913-916.	2.4	74
30	CH Functionalization of Enamides: Synthesis of βâ€Amidovinyl Sulfones <i>via</i> Visibleâ€Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2013, 355, 809-813.	2.1	73
31	Synthesis of Isoquinolones Using Visible-Light-Promoted Denitrogenative Alkyne Insertion of 1,2,3-Benzotriazinones. Organic Letters, 2015, 17, 4272-4275.	2.4	70
32	Site-selective remote C(sp3)–H heteroarylation of amides via organic photoredox catalysis. Nature Communications, 2019, 10, 4743.	5.8	69
33	Visibleâ€Lightâ€Induced Direct Oxidative Câ^'H Amidation of Heteroarenes with Sulfonamides. Chemistry - A European Journal, 2016, 22, 15669-15673.	1.7	68
34	Regiospecific Synthesis of 1‶rifluoromethylisoquinolines Enabled by Photoredox Somophilic Vinyl Isocyanide Insertion. Advanced Synthesis and Catalysis, 2014, 356, 2859-2866.	2.1	67
35	Direct Synthesis of Nitriles from Aldehydes Using an $\langle i \rangle O \langle i \rangle$ -Benzoyl Hydroxylamine (BHA) as the Nitrogen Source. Organic Letters, 2015, 17, 5064-5067.	2.4	64
36	Photoredox-Catalyzed Diamidation and Oxidative Amidation of Alkenes: Solvent-Enabled Synthesis of 1,2-Diamides and α-Amino Ketones. Organic Letters, 2017, 19, 2909-2912.	2.4	62

#	Article	IF	CITATIONS
37	Visible-light-promoted chloramination of olefins with N-chlorosulfonamide as both nitrogen and chlorine sources. Organic and Biomolecular Chemistry, 2015, 13, 10295-10298.	1.5	58
38	Visible light-induced aryltrifluoromethylation of hydroxy alkenes <i>via</i> radical trifluoromethylation-triggered aryl and heteroaryl migration. Organic Chemistry Frontiers, 2018, 5, 2224-2228.	2.3	57
39	Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes. Organic Letters, 2017, 19, 3430-3433.	2.4	55
40	Relay Visible-Light Photoredox Catalysis: Synthesis of Pyrazole Derivatives via Formal $[4+1]$ Annulation and Aromatization. Organic Letters, 2017, 19, 214-217.	2.4	55
41	Enantioselective Remote C(sp ³)–H Cyanation via Dual Photoredox and Copper Catalysis. Organic Letters, 2020, 22, 5910-5914.	2.4	54
42	Total Synthesis of Halipeptin A: A Potent Antiinflammatory Cyclic Depsipeptide. Angewandte Chemie - International Edition, 2005, 44, 135-138.	7.2	53
43	Synthesis of <i>ortho</i> à€(Fluoro)alkylated Pyridines <i>via</i> Visible Lightâ€Promoted Radical Isocyanide Insertion. Advanced Synthesis and Catalysis, 2015, 357, 3681-3686.	2.1	52
44	Visible-light-induced iminyl radical formation ⟨i>via⟨ i> electron-donor–acceptor complexes: a photocatalyst-free approach to phenanthridines and quinolines. Organic Chemistry Frontiers, 2018, 5, 977-981.	2.3	51
45	Photoredox-catalyzed C(sp2)–N coupling reactions. Tetrahedron Letters, 2018, 59, 1605-1613.	0.7	51
46	Visible-light-promoted and photocatalyst-free trifluoromethylation of enamides. Science China Chemistry, 2016, 59, 195-198.	4.2	50
47	Synthesis of Tetracyclic Quinazolinones Using a Visible-Light-Promoted Radical Cascade Approach. Journal of Organic Chemistry, 2016, 81, 7276-7281.	1.7	46
48	Photoredox-Induced Radical Relay toward Functionalized \hat{I}^2 -Amino Alcohol Derivatives. Organic Letters, 2018, 20, 401-404.	2.4	46
49	Visible-Light-Induced Radical Acylation of Imines with α-Ketoacids Enabled by Electron-Donor–Acceptor Complexes. Organic Letters, 2019, 21, 3711-3715.	2.4	46
50	A Convergent Route to the <i>Galbulimima</i> Alkaloids (â^)â€GBâ€13 and (+)â€GBâ€16. Angewandte Chem International Edition, 2010, 49, 5887-5890.	าie - 7.2	45
51	Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis. Chinese Journal of Organic Chemistry, 2020, 40, 3748.	0.6	44
52	Enantioselective \hat{l} ±-Allylation of Anilines Enabled by a Combined Palladium and Photoredox Catalytic System. ACS Catalysis, 2020, 10, 4710-4716.	5.5	40
53	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 9672-9679.	7.2	40
54	A Single Electron Transfer (SET) Approach to C–H Amidation of Hydrazones via Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 5356-5359.	2.4	37

#	Article	IF	CITATIONS
55	Synthesis of Quinolines through Three-Component Cascade Annulation of Aryl Diazonium Salts, Nitriles, and Alkynes. Journal of Organic Chemistry, 2017, 82, 770-775.	1.7	37
56	Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis. Chemical Communications, 2017, 53, 10228-10231.	2.2	35
57	Photoredox-Catalyzed Stereoselective Synthesis of $\langle i \rangle C \langle i \rangle$ -Nucleoside Analogues from Glycosyl Bromides and Heteroarenes. ACS Catalysis, 2021, 11, 9397-9406.	5 . 5	35
58	Asymmetric Total Syntheses of Marine Cyclic Depsipeptide Halipeptins A–D. Chemistry - A European Journal, 2006, 12, 6572-6584.	1.7	33
59	Somophilic Isocyanide Insertion: Synthesis of 6-Arylated and 6-TrifluoroÂmethylated Phenanthridines. Synthesis, 2014, 46, 2711-2726.	1.2	32
60	Synthesis of Fused Quinoline and Quinoxaline Derivatives Enabled by Domino Radical Triple Bond Insertions. Asian Journal of Organic Chemistry, 2014, 3, 1317-1325.	1.3	32
61	Photoinduced and Palladium-Catalyzed Remote Desaturation of Amide Derivatives. Organic Letters, 2021, 23, 6931-6935.	2.4	32
62	Enantioselective Synthesis of Azaflavanones Using Organocatalytic 6â€∢i>endo Azaâ€Michael Addition. Advanced Synthesis and Catalysis, 2014, 356, 982-986.	2.1	31
63	Unified synthesis of enantiopure Î ² 2h, Î ² 3h and Î ² 2,3-amino acids. Chemical Science, 2010, 1, 637.	3.7	30
64	Asymmetric synthesis of enantiopure isoxazolidinone monomers for the synthesis of \hat{l}^2 3-oligopeptides by chemoselective amide ligation. Tetrahedron, 2010, 66, 4841-4853.	1.0	29
65	Synthesis of furo[3,2-c]coumarin derivatives using visible-light-promoted radical alkyne insertion with bromocoumarins. Organic and Biomolecular Chemistry, 2016, 14, 6065-6070.	1.5	29
66	Enantioselective synthesis of 2-substituted pyrrolidinesvia domino cross metathesis/intramolecular aza-Michael addition. RSC Advances, 2013, 3, 1666-1668.	1.7	27
67	Visible-Light-Promoted and Photoredox-Catalyzed Radical Addition to Triple Bonds. Synlett, 2016, 27, 2659-2675.	1.0	27
68	Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to <i>C</i> ₂ -Symmetrical 1,5-Dienes. Journal of the American Chemical Society, 2021, 143, 12836-12846.	6.6	27
69	Halogen-bond-mediated atom transfer radical addition of perfluoroalkyl iodides to alkynes under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 326-331.	2.0	26
70	Stereodivergent Synthesis of αâ€Aminomethyl Cinnamyl Ethers <i>via</i> Photoredoxâ€Catalyzed Radical Relay Reaction. Chinese Journal of Chemistry, 2018, 36, 1147-1150.	2.6	26
71	Synthesis of biaryl sultams using visible-light-promoted denitrogenative cyclization of 1,2,3,4-benzothiatriazine-1,1-dioxides. Organic Chemistry Frontiers, 2016, 3, 953-956.	2.3	24
72	Photocatalytic Isomerization of Styrenyl Halides: Stereodivergent Synthesis of Functionalized Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1472-1477.	1.2	24

#	Article	IF	CITATIONS
73	Photoexcited Chiral Copper Complex-Mediated Alkene <i>E</i> â†' <i>Z</i> Isomerization Enables Kinetic Resolution. Journal of the American Chemical Society, 2022, 144, 10958-10967.	6.6	23
74	Enantioselective synthesis of benzoindolizidine derivatives using chiral phase-transfer catalytic intramolecular domino aza-Michael addition/alkylation. Organic and Biomolecular Chemistry, 2015, 13, 1179-1186.	1.5	22
75	Enantioselective synthesis of 3-substituted 1,2-oxazinanes via organocatalytic intramolecular aza-Michael addition. Organic and Biomolecular Chemistry, 2014, 12, 8607-8610.	1.5	20
76	Metal-free chloroamidation of indoles with sulfonamides and NaClO. Organic Chemistry Frontiers, 2017, 4, 1354-1357.	2.3	20
77	Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines. Science China Chemistry, 2020, 63, 687-691.	4.2	20
78	Regio- and Enantioselective Decarboxylative Allylic Benzylation Enabled by Dual Palladium/Photoredox Catalysis. ACS Catalysis, 2022, 12, 1428-1432.	5.5	20
79	Synthesis of <i>C</i> -Alkynyl Glycosides by Photoredox-Catalyzed Reductive Coupling of Alkynyl Bromides with Glycosyl Bromides. Organic Letters, 2022, 24, 364-368.	2.4	20
80	Total synthesis and cytotoxicity of bisebromoamide and its analogues. Tetrahedron Letters, 2011, 52, 2124-2127.	0.7	19
81	Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions. Acta Chimica Sinica, 2019, 77, 832.	0.5	19
82	A flexible route to immunosuppressive agent FR252921. Asymmetric total synthesis of its (13R,14R,19R)-isomer. Tetrahedron Letters, 2006, 47, 9155-9157.	0.7	18
83	Visible Light-Promoted Isomerization of Alkenes. Chinese Journal of Organic Chemistry, 2019, 39, 95.	0.6	18
84	Reinvestigation on total synthesis of kaitocephalin and its isomers. Tetrahedron, 2011, 67, 1673-1680.	1.0	17
85	Access to Cyanoimines Enabled by Dual Photoredox/Copper-Catalyzed Cyanation of <i>O</i> -Acyl Oximes. Organic Letters, 2020, 22, 7315-7320.	2.4	17
86	Diastereoselective synthesis of epoxide-fused benzoquinolizidine derivatives using intramolecular domino aza-Michael addition/Darzens reaction. Organic and Biomolecular Chemistry, 2014, 12, 265-268.	1.5	16
87	NaClO-Promoted Atroposelective Couplings of 3-Substituted Indoles with Amino Acid Derivatives. Organic Letters, 2019, 21, 4754-4758.	2.4	16
88	Enantioselective Radical S _N 2-Type Alkylation of Morita–Baylis–Hillman Adducts Using Dual Photoredox/Palladium Catalysis. Organic Letters, 2021, 23, 8322-8326.	2.4	16
89	<i>In Vitro</i> Reconstitution of Cinnamoyl Moiety Reveals Two Distinct Cyclases for Benzene Ring Formation. Journal of the American Chemical Society, 2022, 144, 7939-7948.	6.6	16
90	Role of complexation in the photochemical reduction of chromate by acetylacetone. Journal of Hazardous Materials, 2020, 400, 123306.	6.5	15

#	Article	IF	CITATIONS
91	Asymmetric synthesis of atropisomeric compounds with C–N chiral axis. Scientia Sinica Chimica, 2020, 50, 509-525.	0.2	15
92	Atroposelective Haloamidation of Indoles with Amino Acid Derivatives and Hypohalides. Organic Letters, 2019, 21, 8819-8823.	2.4	14
93	Synthesis of Polysubstituted (Hetero)aromatic Compounds Using Visible-Light-Promoted Radical Triple Bond Insertions. Chinese Journal of Organic Chemistry, 2016, 36, 239.	0.6	14
94	Synthesis of Tetrasubstituted Furans by Using Photoredox atalyzed Coupling of 2â€Bromoâ€1,3â€dicarbonyl Compounds with Silyl Enol Ethers. Asian Journal of Organic Chemistry, 2017, 6, 414-417.	1.3	12
95	Synthetic Studies toward Galbulimima Alkaloid (â^')â€GB 13 and (+)â€GB 16 and (â^')â€Himgaline. Chemistry - an Asian Journal, 2011, 6, 573-579.	1.7	9
96	Photoredox-Catalyzed Radical Relay Reaction Toward Functionalized Vicinal Diamines. Synthesis, 2018, 50, 3387-3394.	1.2	8
97	Halogen-Bond-Promoted Radical Isocyanide Insertion of <i>o</i> -Diisocyanoarenes with Perfluoroalkyl Bromides under Visible Light Irradiation. Acta Chimica Sinica, 2017, 75, 115.	0.5	8
98	Enantioselective Radical Functionalization of Imines and Iminium Intermediates via Visible-Light Photoredox Catalysis. Synthesis, 2021, 53, 1706-1718.	1.2	7
99	Aggregation-induced visible light absorption makes reactant 1,2-diisocyanoarenes act as photosensitizers in double radical isocyanide insertions. Physical Chemistry Chemical Physics, 2017, 19, 31443-31451.	1.3	6
100	Synthesis of Chiral Fluorides by Sequential Organocatalyzed Desymmetrization of Glutaric Anhydrides and Photoredox-Catalyzed Decarboxylic Fluorination. Synlett, 2021, 32, 391-394.	1.0	5
101	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie, 2021, 133, 9758-9765.	1.6	5
102	Enantioselective Synthesis of Cryptopleurine and Boehmeriasin A via ÂOrganocatalytic Intramolecular Aza-Michael Addition. Synlett, 2012, 23, 2251-2254.	1.0	4
103	Experimenting with a Suzuki–Miyaura Cross-Coupling Reaction That Demonstrates Tolerance toward Aldehyde Groups To Teach Undergraduate Students the Fundamentals of Transition-Metal-Catalyzed Reactions. Journal of Chemical Education, 2019, 96, 2672-2675.	1.1	3
104	Synthesis of Chiral Unnatural <i>α</i> -Amino Acids Enabled by Photoredox/Brønsted Acid Cocatalysis. Chinese Journal of Organic Chemistry, 2021, 41, 1744.	0.6	2
105	Transition-Metal-Catalyzed Synthesis of 6-Phenyl-5,6-dihydro-2 <i>H</i> -pyran-2-one: A Comprehensive Organic Experiment for Undergraduate Students. University Chemistry, 2021, .	0.0	0