## Marcos Carlos de Mattos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9236216/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. Journal of<br>Materials Science, 2018, 53, 14121-14137.                                                                                                          | 1.7 | 128       |
| 2  | Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates.<br>International Journal of Molecular Sciences, 2015, 16, 29682-29716.                                                                                           | 1.8 | 118       |
| 3  | Chemoenzymatic synthesis of (S)-Pindolol using lipases. Applied Catalysis A: General, 2017, 546, 7-14.                                                                                                                                                      | 2.2 | 110       |
| 4  | Kinetic resolution of drug intermediates catalyzed by lipase B from <i>Candida antarctica</i> immobilized on immobeadâ€350. Biotechnology Progress, 2018, 34, 878-889.                                                                                      | 1.3 | 104       |
| 5  | Coconut water (Cocos nucifera L.)—A new biocatalyst system for organic synthesis. Journal of<br>Molecular Catalysis B: Enzymatic, 2009, 57, 78-82.                                                                                                          | 1.8 | 79        |
| 6  | Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 2017, 125, 104-115.                                                                                          | 1.8 | 79        |
| 7  | Vegetables as Chemical Reagents⊥. Journal of Natural Products, 2007, 70, 478-492.                                                                                                                                                                           | 1.5 | 76        |
| 8  | Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan:<br>Characterization, kinetic resolution application, and docking studies. Chemical Engineering Research<br>and Design, 2022, 177, 223-244.               | 2.7 | 72        |
| 9  | Strategies of covalent immobilization of a recombinant Candida antarctica lipase B on pore-expanded SBA-15 and its application in the kinetic resolution of ( R , S )-Phenylethyl acetate. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 246-258. | 1.8 | 67        |
| 10 | New enamine derivatives of lapachol and biological activity. Anais Da Academia Brasileira De Ciencias,<br>2002, 74, 211-221.                                                                                                                                | 0.3 | 65        |
| 11 | Esterases as stereoselective biocatalysts. Biotechnology Advances, 2015, 33, 547-565.                                                                                                                                                                       | 6.0 | 65        |
| 12 | Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica:<br>Application to the chemoenzymatic production of (R)-Indanol. Journal of Molecular Catalysis B:<br>Enzymatic, 2016, 130, 58-69.                             | 1.8 | 63        |
| 13 | Modulation of lipase B from Candida antarctica properties via covalent immobilization on<br>eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and<br>Biosystems Engineering, 2020, 43, 2253-2268.                    | 1.7 | 54        |
| 14 | Constituents and antioxidant activity of two varieties of coconut water (Cocos nucifera L.). Revista<br>Brasileira De Farmacognosia, 2009, 19, 193-198.                                                                                                     | 0.6 | 48        |
| 15 | Bioreduction of aldehydes and ketones using Manihot species. Phytochemistry, 2006, 67, 1637-1643.                                                                                                                                                           | 1.4 | 43        |
| 16 | Solubilisation capacity of Brij surfactants. International Journal of Pharmaceutics, 2012, 436, 631-635.                                                                                                                                                    | 2.6 | 42        |
| 17 | Bioreduction of aromatic aldehydes and ketones by fruits' barks of Passiflora edulis. Journal of<br>Molecular Catalysis B: Enzymatic, 2008, 54, 130-133                                                                                                     | 1.8 | 37        |
| 18 | Chemoenzymatic synthesis of rasagiline mesylate using lipases. Applied Catalysis A: General, 2015, 492, 76-82.                                                                                                                                              | 2.2 | 34        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of<br>annonalide with DNA. Journal of Photochemistry and Photobiology B: Biology, 2018, 179, 156-166.            | 1.7 | 29        |
| 20 | Chemical modification of clay nanocomposites for the improvement of the catalytic properties of Lipase A from Candida antarctica. Process Biochemistry, 2022, 120, 1-14.                                    | 1.8 | 28        |
| 21 | Lentinus strigellus: a new versatile stereoselective biocatalyst for the bioreduction of prochiral ketones. Tetrahedron: Asymmetry, 2009, 20, 1057-1061.                                                    | 1.8 | 27        |
| 22 | Reduction processes biocatalyzed by Vigna unguiculata. Tetrahedron: Asymmetry, 2010, 21, 566-570.                                                                                                           | 1.8 | 27        |
| 23 | Bioprospection of Cytotoxic Compounds in Fungal Strains Recovered from Sediments of the Brazilian<br>Coast. Chemistry and Biodiversity, 2015, 12, 432-442.                                                  | 1.0 | 25        |
| 24 | Cytotoxic compounds from the marine-derived fungus <i>Aspergillus</i> sp. recovered from the sediments of the Brazilian coast. Natural Product Research, 2015, 29, 1545-1550.                               | 1.0 | 24        |
| 25 | Efficient access to enantiomerically pure cyclic α-amino esters through a lipase-catalyzed kinetic resolution. Tetrahedron: Asymmetry, 2008, 19, 1714-1719.                                                 | 1.8 | 22        |
| 26 | Immobilized Manihot esculenta preparation as a novel biocatalyst in the enantioselective acetylation of racemic alcohols. Tetrahedron: Asymmetry, 2008, 19, 1419-1424.                                      | 1.8 | 20        |
| 27 | Chemoenzymatic Synthesis of Luliconazole Mediated by Lipases. European Journal of Organic<br>Chemistry, 2018, 2018, 2110-2116.                                                                              | 1.2 | 19        |
| 28 | A Hybrid Board Game to Engage Students in Reviewing Organic Acids and Bases Concepts. Journal of<br>Chemical Education, 2020, 97, 3720-3726.                                                                | 1.1 | 18        |
| 29 | A new eremophilane-type sesquiterpene from the phytopatogen fungus Lasiodiplodia theobromae<br>(Sphaeropsidaceae). Journal of the Brazilian Chemical Society, 2008, 19, 478-482.                            | 0.6 | 17        |
| 30 | Enzymatic regioselective production of chloramphenicol esters. Tetrahedron, 2011, 67, 2858-2862.                                                                                                            | 1.0 | 17        |
| 31 | Alcaloides iboga de Peschiera affinis (Apocynaceae) - Atribuição inequÃvoca dos deslocamentos<br>quÃmicos dos átomos de hidrogênio e carbono: atividade antioxidante. Quimica Nova, 2009, 32,<br>1834-1838. | 0.3 | 16        |
| 32 | New fungi for whole-cell biotransformation of carvone enantiomers. Novel p-menthane-2,8,9-triols<br>production. Applied Catalysis A: General, 2013, 468, 88-94.                                             | 2.2 | 16        |
| 33 | Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones. Journal of the Brazilian Chemical Society, 2010, 21, 1509-1516.                              | 0.6 | 15        |
| 34 | Lens culinaris: A new biocatalyst for reducing carbonyl and nitro groups. Biotechnology and Bioprocess Engineering, 2012, 17, 407-412.                                                                      | 1.4 | 15        |
| 35 | Enantioselective acetylation of racemic alcohols by Manihot esculenta and Passiflora edulis preparations. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 157-162.                                   | 1.8 | 13        |
| 36 | 1H and13C NMR spectra of 3,8-dimethoxyfuro[3,2-g]coumarin and maculine fromEsenbeckia grandiflora<br>Martius (Rutaceae). Magnetic Resonance in Chemistry, 2005, 43, 864-866.                                | 1,1 | 12        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Chemoenzymatic synthesis of optically active Mugetanol isomers: use of lipases and oxidoreductases in fragrance chemistry. Tetrahedron: Asymmetry, 2009, 20, 214-219.                                                                             | 1.8 | 12        |
| 38 | Bioreduction of prochiral ketones by growing cells of Lasiodiplodia theobromae: Discovery of a<br>versatile biocatalyst for asymmetric synthesis. Journal of Molecular Catalysis B: Enzymatic, 2010, 65,<br>37-40.                                | 1.8 | 12        |
| 39 | Asymmetric chemoenzymatic synthesis of N-acetyl-α-amino esters based on lipase-catalyzed kinetic resolutions through interesterification reactions. Tetrahedron, 2014, 70, 2264-2271.                                                             | 1.0 | 11        |
| 40 | The orange peel as biocatalyst for the hydrolysis of esters. Industrial Crops and Products, 2016, 84, 22-27.                                                                                                                                      | 2.5 | 9         |
| 41 | Skeletal Optimization of Cytotoxic Lipidic Dialkynylcarbinols. ChemMedChem, 2018, 13, 1124-1130.                                                                                                                                                  | 1.6 | 8         |
| 42 | Total assignment of1H and13C NMR spectra of the alkaloid 3,3-diisopentenyl-N-methyl-2,4-quinoldione and novel reaction derivatives. Magnetic Resonance in Chemistry, 2005, 43, 180-183.                                                           | 1.1 | 7         |
| 43 | Chemoenzymatic preparation of a biologically active naphthoquinone from Tabebuia impetiginosa<br>using lipases or alcohol dehydrogenases. Journal of Molecular Catalysis B: Enzymatic, 2009, 61,<br>279-283.                                      | 1.8 | 7         |
| 44 | CONJUGATE ADDITION OF THIOLS AND MALONATES TO THIOCINNAMATES UNDER PTC CONDITIONS. Synthetic Communications, 2002, 32, 1427-1435.                                                                                                                 | 1.1 | 6         |
| 45 | Metabólitos secundários de Esenbeckia almawillia Kaastra (Rutaceae). Quimica Nova, 2007, 30, 1589-1591.                                                                                                                                           | 0.3 | 5         |
| 46 | Semisynthesis and absolute configuration of a novel rearranged 19,20-δ-lactone (9β <i>H</i> )-pimarane<br>diterpene. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 870-875.                                                   | 0.2 | 5         |
| 47 | Efficient Synthesis of 2-Substituted 7-Azaindole Derivatives via Palladium-Catalyzed Coupling and C-N<br>Cyclization Using 18-Crown-6. Synthesis, 2007, 2007, 2149-2152.                                                                          | 1.2 | 4         |
| 48 | Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization. Molecular Catalysis, 2020, 485, 110819.                                                                                    | 1.0 | 4         |
| 49 | Lipase-catalysed enantioselective kinetic resolution of rac-lipidic alkynylcarbinols and a C5 synthon thereof via a hydrolysis approach. Molecular Catalysis, 2020, 488, 110926.                                                                  | 1.0 | 4         |
| 50 | A study of the sequential Michael addition-ring closure reaction of ethyl acetoacetate with chalcone:<br>influence of quaternary ammonium cations as phase transfer catalysts. Journal of the Brazilian<br>Chemical Society, 2005, 16, 1048-1053. | 0.6 | 3         |
| 51 | Quantification of Barbatusin and 3 <i>β</i> -Hydroxy-3-deoxybarbatusin in <i> Plectranthus</i> Species by HPLC-DAD. International Journal of Analytical Chemistry, 2017, 2017, 1-5.                                                               | 0.4 | 3         |
| 52 | Immobilization of Amano lipase AK from Pseudomonas fluorescens on different types of<br>chitosan-containing supports: use in the kinetic resolution of rac-indanol. Bioprocess and Biosystems<br>Engineering, 2021, 44, 785-792.                  | 1.7 | 3         |
| 53 | Diastereoselectivity in the Synthesis of Unnatural α-Amino Acid Esters by Phase Transfer Catalysis.<br>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 305-309.                                                | 0.3 | 2         |
| 54 | Regioselective Preparation of Thiamphenicol Esters Through Lipase-Catalyzed Processes. Journal of the Brazilian Chemical Society, 2014, , .                                                                                                       | 0.6 | 2         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aspectos mecanÃsticos da adição de Michael. Quimica Nova, 1999, 22, 710-714.                                                                                                                                                | 0.3 | 2         |
| 56 | Biotransformation of the DiterpeneEnt-18,19-dihydroxytrachylobane byRhizopus stolonifer. Journal of the Brazilian Chemical Society, 2015, , .                                                                               | 0.6 | 2         |
| 57 | Novel Lapachol Derivatives and Their Antioxidant Activity. Natural Product Communications, 2006, 1, 1934578X0600100.                                                                                                        | 0.2 | 1         |
| 58 | 3,3-Diisopentenyl-N-Methyl-2,4-Quinoldione from Esenbeckia Almawillia: The Antitumor Activity of this Alkaloid and its Derivatives. Natural Product Communications, 2006, 1, 1934578X0600100.                               | 0.2 | 1         |
| 59 | Zingiber officinale(GINGER) AS AN ENZYME SOURCE FOR THE REDUCTION OF CARBONYL COMPOUNDS.<br>Quimica Nova, 2015, , .                                                                                                         | 0.3 | 1         |
| 60 | Biologically Active Volatile Organic Compounds (VOCs) Produced by Rhizospheric Actinobacteria<br>Strains Inhibit the Growth of the Phytopathogen Colletotrichum musae. Journal of the Brazilian<br>Chemical Society, 0, , . | 0.6 | 1         |
| 61 | Whole cells of recombinant CYP153A6-E. coli as biocatalyst for regioselective hydroxylation of monoterpenes. AMB Express, 2022, 12, 48.                                                                                     | 1.4 | 0         |