
Jian-Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9235394/publications.pdf Version: 2024-02-01

LIAN-LI MANC

#	Article	IF	CITATIONS
1	Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11, 3908.	12.8	172
2	Effects of contact model and NO x on soot oxidation activity over Pt/MnO x -CeO 2 and the reaction mechanisms. Chemical Engineering Journal, 2017, 327, 1066-1076.	12.7	49
3	Structure-Analgesic Activity Relationship Studies on the C18- and C19-Diterpenoid Alkaloids. Chemical and Pharmaceutical Bulletin, 2009, 57, 801-807.	1.3	46
4	Steam reforming of hydrocarbon fuels over M (Fe, Co, Ni, Cu, Zn)–Ce bimetal catalysts supported on Al2O3. International Journal of Hydrogen Energy, 2016, 41, 10473-10482.	7.1	41
5	Catalytic cracking of RP-3 jet fuel over wall-coated Pt/ZrO2–TiO2–Al2O3 catalysts with different Al2O3 ratios. Journal of Analytical and Applied Pyrolysis, 2015, 111, 100-107.	5.5	37
6	Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce–Al 2 O 3 bifunctional catalysts: Effects of SrO addition. International Journal of Hydrogen Energy, 2016, 41, 13436-13447.	7.1	35
7	Promotional effects of Titanium additive on the surface properties, active sites and catalytic activity of W/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3. Applied Surface Science, 2017, 419, 697-707.	6.1	32
8	Yâ€shaped poly(ethylene glycol) and poly(trimethylene carbonate) amphiphilic copolymer: Synthesis and for drug delivery. Journal of Polymer Science Part A, 2008, 46, 8131-8140.	2.3	27
9	Kerosene cracking over supported monolithic Pt catalysts: Effects of SrO and BaO promoters. Chinese Journal of Catalysis, 2013, 34, 1139-1147.	14.0	27
10	Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catalysis Today, 2019, 327, 64-72.	4.4	27
11	Effect of the calcination temperature of cerium–zirconium mixed oxides on the structure and catalytic performance of WO ₃ /CeZrO ₂ monolithic catalyst for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 24177-24187.	3.6	26
12	Colanic acid biosynthesis in Escherichia coli is dependent on lipopolysaccharide structure and glucose availability. Microbiological Research, 2020, 239, 126527.	5.3	26
13	Bi-functional composite oxides M(Na, K)-Ni/La-Al2O3 catalysts for steam reforming of n-decane. Fuel, 2018, 212, 193-201.	6.4	25
14	Interactional effect of cerium and manganese on NO catalytic oxidation. Environmental Science and Pollution Research, 2017, 24, 9314-9324.	5.3	24
15	Catalytic Cracking of RP-3 Jet Fuel over Pt/CeO ₂ –Al ₂ O ₃ by Adding Cu/ZSM-5. Energy & Fuels, 2014, 28, 5382-5388.	5.1	23
16	Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts. Applied Surface Science, 2018, 443, 336-344.	6.1	23
17	Enhanced activity and stability of the monolithic Pt/SiO2–Al2O3 diesel oxidation catalyst promoted by suitable tungsten additive amount. Journal of Industrial and Engineering Chemistry, 2017, 54, 359-368.	5.8	20
18	Solvent Effects on the Low-Temperature NH ₃ –SCR Activity and Hydrothermal Stability of WO ₃ /SiO ₂ @CeZrO _{<i>x</i>} Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13418-13429.	6.7	20

Jian-Li Wang

#	Article	IF	CITATIONS
19	Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning. Science of the Total Environment, 2021, 793, 148532.	8.0	20
20	Steam reforming of n -decane toward H 2 production over Ni/Ce-Al 2 O 3 composite catalysts: Effects of M (M = Fe, Co, Cu, Zn) promoters. Journal of Analytical and Applied Pyrolysis, 2016, 120, 238-246.	5.5	19
21	Advanced Insight into the Size Effect of PtPd Nanoparticles on NO Oxidation by <i>in Situ</i> FTIR Spectra. Industrial & Engineering Chemistry Research, 2018, 57, 3887-3897.	3.7	19
22	Enhancement of the Hydrothermal Stability of WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ Catalyst by Silica Modification for NH ₃ -SCR. ACS Applied Energy Materials, 2020, 3, 1161-1170.	5.1	19
23	Remove cooking fume using catalytic combustion over Pt/La-Al2O3. Journal of Environmental Sciences, 2007, 19, 644-646.	6.1	18
24	Catalytic Cracking of <i>n</i> -Decane over Monometallic and Bimetallic Pt–Ni/MoO ₃ /La–Al ₂ O ₃ Catalysts: Correlations of Surface Properties and Catalytic Behaviors. Industrial & Engineering Chemistry Research, 2019, 58, 1823-1833.	3.7	18
25	The influence of H2O2 on the properties of CeO2-ZrO2 mixed oxides. Journal of Materials Science, 2017, 52, 5242-5255.	3.7	17
26	Relationship between Coking Behavior in Hydrocarbon Fuel Pyrolysis and Surface Roughness. Energy & Fuels, 2018, 32, 1223-1229.	5.1	17
27	Designed synthesis of Zr-based ceria–zirconia–neodymia composite with high thermal stability and its enhanced catalytic performance for Rh-only three-way catalyst. Catalysis Science and Technology, 2016, 6, 7437-7448.	4.1	16
28	Study on hydrothermal deactivation of Pt/MnO x -CeO2 for NO x -assisted soot oxidation: redox property, surface nitrates, and oxygen vacancies. Environmental Science and Pollution Research, 2018, 25, 16061-16070.	5.3	16
29	New Insights into Excellent Catalytic Performance of the Ce-Modified Catalyst for NO Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 7876-7885.	3.7	16
30	Synthesis of a High-Stability Nanosized Pt-Loaded MgAl ₂ O ₄ Catalyst for <i>n</i> -Decane Cracking with Enhanced Activity and Durability. Industrial & Engineering Chemistry Research, 2020, 59, 4338-4347.	3.7	15
31	Rapid glacier retreat in the Naimona'Nyi region, western Himalayas, between 2003 and 2013. Journal of Applied Remote Sensing, 2014, 8, 083508.	1.3	13
32	Hydrogen-Rich Syngas Production by Toluene Reforming in a Microchannel Reactor Coated with Ni/MgO–Al ₂ O ₃ Multifunctional Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 19794-19802.	3.7	12
33	Investigation of the selective catalytic reduction of NO with NH ₃ over the WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ catalyst: the role of H ₂ O in SO ₂ inhibition. New Journal of Chemistry, 2019, 43, 2258-2268.	2.8	12
34	Effects of M (Zr, Nb, Y) modifiers on the catalytic performance of Ni/Ce-Al2O3 bimetallic catalyst in steam reforming of n-decane. Journal of Analytical and Applied Pyrolysis, 2016, 122, 142-150.	5.5	11
35	Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90°C) hydrothermal procedure. Journal of Materials Science, 2017, 52, 5894-5907.	3.7	11
36	A Comprehensive Investigation of the Pyrolysis Effect on Heat Transfer Characteristics for <i>n</i> -Decane in the Horizon Mini-Channel. Energy & Fuels, 2020, 34, 199-210.	5.1	11

JIAN-LI WANG

#	Article	IF	CITATIONS
37	Significant differences of NH ₃ -SCR performances between monoclinic and hexagonal WO ₃ on Ce-based catalysts. Environmental Science: Nano, 2021, 8, 2988-3000.	4.3	11
38	Soot combustion over CeO2 catalyst: the influence of biodiesel impurities (Na, K, Ca, P) on surface chemical properties. Environmental Science and Pollution Research, 2021, 28, 26018-26029.	5.3	11
39	Effects of CeO ₂ Addition on Improved NO Oxidation Activities of Pt/SiO ₂ -Al ₂ O ₃ Diesel Oxidation Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1242-1252.	4.9	11
40	Facile fabrication of novel Eu ontaining copolymer and luminescent properties. Polymer Engineering and Science, 2009, 49, 1273-1278.	3.1	10
41	The performance of Pt/ZrxTixAl1–2xO2 as Kerosene cracking catalysts. Chinese Journal of Catalysis, 2014, 35, 175-184.	14.0	10
42	An experimental and numerical investigation on thermal cracking of n-decane in the microchannel. Petroleum Science and Technology, 2016, 34, 555-561.	1.5	10
43	Promotional effect of niobium substitution on the low-temperature activity of a WO ₃ /CeZrO _x monolithic catalyst for the selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 47570-47582.	3.6	10
44	Comparative activity and hydrothermal stability of FeOx- and CeO2-doped Pt-based catalysts for eliminating diesel emissions. Journal of Environmental Chemical Engineering, 2020, 8, 104361.	6.7	10
45	Openâ€Framework Beryllium Phosphites with Layered Structures. European Journal of Inorganic Chemistry, 2011, 2011, 4949-4953.	2.0	9
46	Effect of a mixed precursor over monolith MnO _x /La–Al ₂ O ₃ catalyst for toluene oxidation. New Journal of Chemistry, 2020, 44, 10859-10869.	2.8	8
47	Constructing a Pt/YMn ₂ O ₅ Interface to Form Multiple Active Centers to Improve the Hydrothermal Stability of NO Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 20875-20887.	8.0	8
48	An experimental and simulated investigation on pyrolysis of blended cyclohexane and benzene under supercritical pressure. Petroleum Chemistry, 2017, 57, 71-78.	1.4	7
49	Preparation of Ce0.5Zr0.5O2–Al2O3 with high-temperature sintering resistance and its supported Pd-only three-way catalyst. Journal of Materials Science, 2019, 54, 2796-2813.	3.7	7
50	Catalytic performance promoted on Pt-based diesel oxidation catalyst assisted by polyvinyl alcohol. Environmental Science and Pollution Research, 2020, 27, 41824-41838.	5.3	7
51	Improved low-temperature catalytic oxidation performance of Pt-based catalysts by modulating the electronic and size effects. New Journal of Chemistry, 2020, 44, 10500-10506.	2.8	7
52	Toxicokinetics and systematic responses of differently sized indium tin oxide (ITO) particles in mice via oropharyngeal aspiration exposure. Environmental Pollution, 2021, 290, 117993.	7.5	7
53	Synthesis of Yâ€shaped poly(<i>N</i> , <i>N</i> â€dimethylaminoâ€2â€ethyl methacrylate) and poly(trimethylene)	Ţj ETQq1	1 ₆ 0.78431
54	Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium–Phosphorous Alloy Nanoclusters on N-Doped Carbon. Inorganic Chemistry, 2021, 60, 10707-10714.	4.0	6

JIAN-LI WANG

#	Article	IF	CITATIONS
55	Investigation on the Thermal Cracking of n -Decane under Supercritical Pressure by a Developed Online-Sampling Experimental Method. Petroleum Chemistry, 2020, 60, 39-44.	1.4	5
56	Effects of geometric parameters of rectangular cooling channel on pyrolysis carbon deposition in fuelâ€cooled plates. Canadian Journal of Chemical Engineering, 0, , .	1.7	5
57	Engineering Escherichia coli to produce Bordetella pertussis oligosaccharide with multiple trisaccharide units. Metabolic Engineering, 2022, 69, 147-162.	7.0	5
58	Efficient monolithic MnOx catalyst prepared by heat treatment for ozone decomposition. Environmental Science and Pollution Research, 2022, 29, 44324-44334.	5.3	5
59	Investigations on the thermal cracking and pyrolysis mechanism of China No.3 aviation kerosene under supercritical conditions. Petroleum Science and Technology, 2018, 36, 1396-1404.	1.5	4
60	Key role of NO + C3H8 reaction for the elimination of NO in automobile exhaust by three-way catalyst. Environmental Science and Pollution Research, 2019, 26, 26071-26081.	5.3	4
61	The promotion effects of TiO 2 on the selective catalytic reduction of NO x with NH 3 over ceo 2 â€₩O 3 /ZrO 2 : The catalytic performance and reaction route. Canadian Journal of Chemical Engineering, 2019, 97, 1274-1282.	1.7	4
62	NiO–MoO ₃ promoted Pt/ZrO ₂ –TiO ₂ –Al ₂ O ₃ catalyst with excellent cracking performance of <i>n</i> -decane. Petroleum Science and Technology, 2020, 38, 595-601.	1.5	4
63	The inhibition mechanism of H2O at hydrothermal aging over Pt/SiO2-Al2O3 for NO oxidation. Journal of Environmental Chemical Engineering, 2021, 9, 105497.	6.7	4
64	Movement of lateral hyporheic flow between stream and groundwater. Science China Earth Sciences, 2017, 60, 2033-2040.	5.2	3
65	The preparation of Pd/CeO2–ZrO2–Al2O3 catalyst with superior structural stability: effect of zirconia incorporation method. Journal of Materials Science, 2020, 55, 9993-10008.	3.7	3
66	Enhanced performance of Pt-based diesel oxidation catalyst via defective MnOx: The role of Pt/MnOx interface. Molecular Catalysis, 2022, 521, 112198.	2.0	3
67	Atomic rearrangement on YMn2O5 modified Pt-based diesel oxidation catalyst for promoted performance. Applied Catalysis A: General, 2022, 643, 118742.	4.3	2
68	Catalytic cracking of n-decane over NiO–MoO3 modified Pt/ZrO2–TiO2–Al2O3 catalyst with different Al2O3 ratios. Petroleum Chemistry, 2017, 57, 666-672.	1.4	1
69	Dispersion improvement and activity promotion of Pt catalysts supported on a Ce-based support by pH adjustment. New Journal of Chemistry, 2018, 42, 15639-15647.	2.8	1
70	The performance comparison in predicting n-decane pyrolysis process between three ANNs methods: MLP, RBFN and GRNN. Petroleum Science and Technology, 2019, 37, 1053-1058.	1.5	0
71	Modified Martin-Hou Equation of State Used in the Liquid Region for Pure Substances. Russian Journal of Physical Chemistry A, 2022, 96, S16-S26.	0.6	0