Giovanni Di Liberto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9235129/publications.pdf

Version: 2024-02-01

41 papers 1,325 citations

279487 23 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

847 citing authors

#	Article	IF	CITATIONS
1	A Close Look at the Structure of the TiO ₂ -APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 430-440.	1.5	123
2	Role of Dihydride and Dihydrogen Complexes in Hydrogen Evolution Reaction on Single-Atom Catalysts. Journal of the American Chemical Society, 2021, 143, 20431-20441.	6.6	77
3	Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. ACS Catalysis, 2022, 12, 2947-2958.	5 . 5	68
4	Universal Principles for the Rational Design of Single Atom Electrocatalysts? Handle with Care. ACS Catalysis, 2022, 12, 5846-5856.	5 . 5	60
5	Semiclassical "Divide-and-Conquer―Method for Spectroscopic Calculations of High Dimensional Molecular Systems. Physical Review Letters, 2017, 119, 010401.	2.9	57
6	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	18.7	50
7	Unraveling the Cooperative Mechanism of Visible-Light Absorption in Bulk N,Nb Codoped TiO ₂ Powders of Nanomaterials. Journal of Physical Chemistry C, 2014, 118, 24152-24164.	1.5	47
8	Role of Heterojunction in Charge Carrier Separation in Coexposed Anatase (001)–(101) Surfaces. Journal of Physical Chemistry Letters, 2019, 10, 2372-2377.	2.1	46
9	Quantum confinement in group Ill–V semiconductor 2D nanostructures. Nanoscale, 2020, 12, 17494-17501.	2.8	46
10	Band Gap of 3D Metal Oxides and Quasi-2D Materials from Hybrid Density Functional Theory: Are Dielectric-Dependent Functionals Superior?. Journal of Chemical Theory and Computation, 2019, 15, 6294-6312.	2.3	45
11	Rational Design of Semiconductor Heterojunctions for Photocatalysis. Chemistry - A European Journal, 2021, 27, 13306-13317.	1.7	44
12	Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. Journal of Physical Chemistry C, 2022, 126, 2184-2198.	1.5	40
13	"Divide and conquer―semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. Journal of Chemical Physics, 2018, 148, 014307.	1.2	39
14	"Divide-and-conquer―semiclassical molecular dynamics: An application to water clusters. Journal of Chemical Physics, 2018, 148, 104302.	1.2	38
15	Impregnation versus Bulk Synthesis: How the Synthetic Route Affects the Photocatalytic Efficiency of Nb/Ta:N Codoped TiO ₂ Nanomaterials. Journal of Physical Chemistry C, 2015, 119, 24104-24115.	1.5	36
16	The importance of the pre-exponential factor in semiclassical molecular dynamics. Journal of Chemical Physics, 2016, 145, 144107.	1.2	36
17	Nitrogen doping in coexposed (001)–(101) anatase TiO ₂ surfaces: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 21497-21505.	1.3	36
18	Protonated glycine supramolecular systems: the need for quantum dynamics. Chemical Science, 2018, 9, 7894-7901.	3.7	35

#	Article	IF	Citations
19	Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics. Journal of Chemical Physics, 2019, 150, 224107.	1.2	29
20	Reduced rovibrational coupling Cartesian dynamics for semiclassical calculations: Application to the spectrum of the Zundel cation. Journal of Chemical Physics, 2019, 151, 114307.	1.2	26
21	Plasmonic Au nanoclusters dispersed in nitrogen-doped graphene as a robust photocatalyst for light-to-hydrogen conversion. Journal of Materials Chemistry A, 2021, 9, 22810-22819.	5.2	26
22	Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocomposites: The Case of Silver and Anatase. Journal of Physical Chemistry Letters, 2017, 8, 5372-5377.	2.1	25
23	Charge Carriers Cascade in a Ternary TiO ₂ /TiO ₂ /ZnS Heterojunction: A DFT Study. ChemCatChem, 2020, 12, 2097-2105.	1.8	25
24	Z-Scheme <i>versus</i> type-II junction in g-C ₃ N ₄ /TiO ₂ and g-C ₃ N ₄ /SrTiO ₃ /TiO ₂ heterostructures. Catalysis Science and Technology, 2021, 11, 3589-3598.	2.1	25
25	Nature of SrTiO3/TiO2 (anatase) heterostructure from hybrid density functional theory calculations. Journal of Chemical Physics, 2020, 152, 184704.	1.2	23
26	Band Gap in Magnetic Insulators from a Charge Transition Level Approach. Journal of Chemical Theory and Computation, 2020, 16, 3786-3798.	2.3	22
27	WO ₃ /BiVO ₄ Photoanodes: Facets Matching at the Heterojunction and BiVO ₄ Layer Thickness Effects. ACS Applied Energy Materials, 2021, 4, 8421-8431.	2.5	22
28	pH Dependence of MgO, TiO ₂ , and \hat{I}^3 -Al ₂ O ₃ Surface Chemistry from First Principles. Journal of Physical Chemistry C, 2022, 126, 10216-10223.	1.5	21
29	Role of surface termination and quantum size in α-CsPbX ₃ (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Physical Chemistry Chemical Physics, 2021, 23, 3031-3040.	1.3	20
30	Nature and Role of Surface Junctions in BiOIO ₃ Photocatalysts. Advanced Functional Materials, 2021, 31, 2009472.	7.8	20
31	A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Clâ ^{^2} â ⁻ CH3Cl pre-reaction complex with the VENUS suite of codes. Journal of Chemical Physics, 2018, 149, 164113.	1.2	19
32	Band offset in semiconductor heterojunctions. Journal of Physics Condensed Matter, 2021, 33, 415002.	0.7	19
33	Role of surface termination in forming type-II photocatalyst heterojunctions: the case of TiO ₂ /BiVO ₄ . Journal of Physics Condensed Matter, 2021, 33, 075001.	0.7	18
34	Theoretical treatment of semiconductor heterojunctions for photocatalysis: the WO ₃ /BiVO ₄ interface. Journal of Physics Condensed Matter, 2019, 31, 434001.	0.7	16
35	Direct measurement and modeling of spontaneous charge migration across anatase–brookite nanoheterojunctions. Journal of Materials Chemistry A, 2021, 9, 7782-7790.	5.2	14
36	LaFeO ₃ meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 3330-3340.	5. 2	14

#	Article	IF	CITATIONS
37	Structure and Band Alignment of InP Photocatalysts Passivated by TiO ₂ Thin Films. Journal of Physical Chemistry C, 2021, 125, 11620-11627.	1.5	7
38	First principles approach to solar energy conversion efficiency of semiconductor heterojunctions. Solar Energy, 2022, 236, 445-454.	2.9	6
39	Structural and electronic properties of TiO2 from first principles calculations. , 2021, , 67-85.		2
40	Computational study of group III-V semiconductors and their interaction with oxide thin films. Solid-State Electronics, 2021, 184, 108038.	0.8	2
41	Structures and properties of Pd nanoparticles intercalated in layered TiO2: A computational study. Catalysis Today, 2021, , .	2.2	1