Marshall B Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9234820/publications.pdf

Version: 2024-02-01

80 papers 15,210 citations

45 h-index 70 g-index

88 all docs 88 docs citations

88 times ranked 14592 citing authors

#	Article	IF	CITATIONS
1	Associations between wildfire smoke exposure during pregnancy and risk of preterm birth in California. Environmental Research, 2022, 203, 111872.	7.5	66
2	Upstream oil and gas production and ambient air pollution in California. Science of the Total Environment, 2022, 806, 150298.	8.0	23
3	Exposures and behavioural responses to wildfire smoke. Nature Human Behaviour, 2022, 6, 1351-1361.	12.0	60
4	The changing risk and burden of wildfire in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	238
5	Using satellite imagery to understand and promote sustainable development. Science, 2021, 371, .	12.6	138
6	Scalable deep learning to identify brick kilns and aid regulatory capacity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
7	The effect of information about climate risk on property values. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,\ldots$	7.1	44
8	Historical warming has increased U.S. crop insurance losses. Environmental Research Letters, 2021, 16, 084025.	5.2	27
9	Twice Is Nice: The Benefits of Two Ground Measures for Evaluating the Accuracy of Satellite-Based Sustainability Estimates. Remote Sensing, 2021, 13, 3160.	4.0	9
10	Quantifying the Effect of Precipitation on Landslide Hazard in Urbanized and Nonâ€Urbanized Areas. Geophysical Research Letters, 2021, 48, e2021GL094038.	4.0	17
11	Contribution of historical precipitation change to US flood damages. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	103
12	Addressing Climate Change and Its Effects on Human Health: A Call to Action for Medical Schools. Academic Medicine, 2021, 96, 324-328.	1.6	51
13	Eyes in the Sky, Boots on the Ground: Assessing Satellite―and Groundâ€Based Approaches to Crop Yield Measurement and Analysis. American Journal of Agricultural Economics, 2020, 102, 202-219.	4.3	86
14	Flood Size Increases Nonlinearly Across the Western United States in Response to Lower Snowâ∈Precipitation Ratios. Water Resources Research, 2020, 56, e2019WR025571.	4.2	53
15	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	29.7	153
16	Farm Parcel Delineation Using Spatio-temporal Convolutional Networks. , 2020, , .		14
17	Reply to: Temporal displacement, adaptation and the effect of climate on suicide rates. Nature Climate Change, 2020, 10, 502-504.	18.8	2
18	Directions for Research on Climate and Conflict. Earth's Future, 2020, 8, e2020EF001532.	6.3	37

#	Article	IF	Citations
19	Dust pollution from the Sahara and African infant mortality. Nature Sustainability, 2020, 3, 863-871.	23.7	33
20	Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 2020, 11 , 2583.	12.8	158
21	The Economic Origins of Conflict in Africa. Journal of Political Economy, 2020, 128, 3940-3997.	4.5	69
22	Generating Interpretable Poverty Maps using Object Detection in Satellite Images. , 2020, , .		37
23	Sight for Sorghums: Comparisons of Satellite- and Ground-Based Sorghum Yield Estimates in Mali. Remote Sensing, 2020, 12, 100.	4.0	35
24	Women and children living in areas of armed conflict in Africa: a geospatial analysis of mortality and orphanhood. The Lancet Global Health, 2019, 7, e1622-e1631.	6.3	56
25	Predicting Economic Development using Geolocated Wikipedia Articles. , 2019, , .		31
26	Mapping Missing Population in Rural India. , 2019, , .		15
27	Reply to Rosen: Temperature–growth relationship is robust. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16171-16172.	7.1	4
28	Climate as a risk factor for armed conflict. Nature, 2019, 571, 193-197.	27.8	306
29	Global warming has increased global economic inequality. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9808-9813.	7.1	413
30	Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sensing of Environment, 2019, 228, 115-128.	11.0	235
31	Back to the root causes of war: food shortages – Authors' reply. Lancet, The, 2019, 393, 982.	13.7	0
32	Non-economic factors in violence: Evidence from organized crime, suicides and climate in Mexico. Journal of Economic Behavior and Organization, 2019, 168, 434-452.	2.0	33
33	Sell Low and Buy High: Arbitrage and Local Price Effects in Kenyan Markets*. Quarterly Journal of Economics, 2019, 134, 785-842.	8.6	95
34	Learning to Interpret Satellite Images using Wikipedia. , 2019, , .		13
35	Armed conflict and child mortality in Africa: a geospatial analysis. Lancet, The, 2018, 392, 857-865.	13.7	103
36	Large potential reduction in economic damages under UN mitigation targets. Nature, 2018, 557, 549-553.	27.8	214

#	Article	IF	Citations
37	Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Medicine, 2018, 15, e1002586.	8.4	40
38	Robust relationship between air quality and infant mortality in Africa. Nature, 2018, 559, 254-258.	27.8	230
39	Higher temperatures increase suicide rates in the United States and Mexico. Nature Climate Change, 2018, 8, 723-729.	18.8	286
40	Comment on "Food Abundance and Violent Conflict in Africa― American Journal of Agricultural Economics, 2018, 100, 1007-1009.	4.3	0
41	Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep Learning. , 2018, , .		29
42	Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature, 2018, 560, 480-483.	27.8	107
43	Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2189-2194.	7.1	256
44	Using remotely sensed temperature to estimate climate response functions. Environmental Research Letters, 2017, 12, 014013.	5.2	17
45	Mapping Smallholder Yield Heterogeneity at Multiple Scales in Eastern Africa. Remote Sensing, 2017, 9, 931.	4.0	66
46	Opportunities for advances in climate change economics. Science, 2016, 352, 292-293.	12.6	117
47	Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 2016, 8, 106-140.	3.1	382
48	Combining satellite imagery and machine learning to predict poverty. Science, 2016, 353, 790-794.	12.6	938
49	SOME RESEARCH CHALLENGES IN THE ECONOMICS OF CLIMATE CHANGE. Climate Change Economics, 2016, 07, 1650002.	5.0	10
50	Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis. The Lancet Global Health, 2016, 4, e936-e945.	6.3	77
51	Conflict in a changing climate. European Physical Journal: Special Topics, 2016, 225, 489-511.	2.6	21
52	Income Shocks and HIV in Africa. Economic Journal, 2015, 125, 1157-1189.	3.6	101
53	Climate and Conflict. Annual Review of Economics, 2015, 7, 577-617.	5.5	409
54	Incorporating Climate Uncertainty into Estimates of Climate Change Impacts. Review of Economics and Statistics, 2015, 97, 461-471.	4.3	148

#	Article	IF	Citations
55	Global non-linear effect of temperature on economic production. Nature, 2015, 527, 235-239.	27.8	1,425
56	Reconciling climate-conflict meta-analyses: reply to Buhaug et al Climatic Change, 2014, 127, 399-405.	3.6	24
57	Temperature and violence. Nature Climate Change, 2014, 4, 234-235.	18.8	24
58	Climate, conflict, and social stability: what does the evidence say?. Climatic Change, 2014, 123, 39-55.	3.6	252
59	Quantifying the Influence of Climate on Human Conflict. Science, 2013, 341, 1235367.	12.6	1,202
60	Impacts of El Nino-Southern Oscillation events on China's rice production. Journal of Chinese Geography, 2010, 20, 3-16.	3.9	34
61	Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1848-1853.	7.1	179
62	Reply to Sutton et al.: Relationship between temperature and conflict is robust. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, .	7.1	16
63	Climate robustly linked to African civil war. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E185; author reply E186-7.	7.1	64
64	Global and Regional Assessments. Advances in Global Change Research, 2010, , 177-192.	1.6	2
65	The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 2010, 20, 577-585.	7.8	364
66	On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 2010, 150, 1443-1452.	4.8	636
67	Climate Effects on Food Security: An Overview. Advances in Global Change Research, 2010, , 13-30.	1.6	30
68	Food Security and Adaptation to Climate Change: What Do We Know?. Advances in Global Change Research, 2010, , 133-153.	1.6	48
69	Warming increases the risk of civil war in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20670-20674.	7.1	711
70	A Global Model Tracking Water, Nitrogen, and Land Inputs and Virtual Transfers from Industrialized Meat Production and Trade. Environmental Modeling and Assessment, 2009, 14, 179-193.	2.2	40
71	Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environmental Change, 2009, 19, 317-325.	7.8	221
72	Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science, 2008, 319, 607-610.	12.6	2,309

#	Article	IF	CITATION
73	Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 2008, 3, 034007.	5.2	299
74	Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7752-7757.	7.1	247
75	International Trade in Meat: The Tip of the Pork Chop. Ambio, 2007, 36, 622-629.	5 . 5	161
76	The Ripple Effect: Biofuels, Food Security, and the Environment. Environment, 2007, 49, 30-43.	1.4	246
77	AQUACULTURE AND OCEAN RESOURCES: Raising Tigers of the Sea. Annual Review of Environment and Resources, 2005, 30, 185-218.	13.4	246
78	Using climate models to improve Indonesian food security. Bulletin of Indonesian Economic Studies, 2004, 40, 355-377.	1.6	44
79	Adaptation to Climate Change: Evidence from US Agriculture. SSRN Electronic Journal, 0, , .	0.4	17
80	Economic Shocks and Varieties of Conflict: Global Prices, Real Income and Local Violence in Africa. SSRN Electronic Journal, 0, , .	0.4	4