Masao Ogata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9234748/publications.pdf

Version: 2024-02-01

130	3,570 citations	33	55
papers		h-index	g-index
131	131	131	2377
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The <i>t</i> aê€" <i>J</i> model for the oxide high- <i>T</i> _c superconductors. Reports on Progress in Physics, 2008, 71, 036501.	20.1	257
2	Theoretical Aspects of Charge Ordering in Molecular Conductors. Journal of the Physical Society of Japan, 2006, 75, 051009.	1.6	156
3	Transport Properties and Diamagnetism of Dirac Electrons in Bismuth. Journal of the Physical Society of Japan, 2015, 84, 012001.	1.6	128
4	Superconducting States in Frustratingt–JModel: A Model Connecting High-TcCuprates, Organic Conductors and NaxCoO2. Journal of the Physical Society of Japan, 2003, 72, 1839-1842.	1.6	126
5	Collapse of Quantized Conductance in a Dirty Tomonaga-Luttinger Liquid. Physical Review Letters, 1994, 73, 468-471.	7.8	115
6	Mott Transitions and d-Wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration. Journal of the Physical Society of Japan, 2006, 75, 114706.	1.6	111
7	Recent Topics of Organic Superconductors. Journal of the Physical Society of Japan, 2012, 81, 011004.	1.6	106
8	Crossover between BCS Superconductor and Doped Mott Insulator of <i>d < /i>-Wave Pairing State in Two-Dimensional Hubbard Model. Journal of the Physical Society of Japan, 2013, 82, 014707.</i>	1.6	90
9	Three-Dimensional Dirac Electrons at the Fermi Energy in Cubic Inverse Perovskites: Ca ₃ PbO and Its Family. Journal of the Physical Society of Japan, 2011, 80, 083704.	1.6	85
10	Crossover of Superconducting Properties and Kinetic-Energy Gain in Two-Dimensional Hubbard Model. Journal of the Physical Society of Japan, 2004, 73, 1119-1122.	1.6	84
11	Microscopic Identification of the D-vector in Triplet Superconductor Sr2RuO4. Journal of the Physical Society of Japan, 2003, 72, 673-687.	1.6	81
12	Superconductivity in NaxCoO2·yH2O due to Charge Fluctuation. Journal of the Physical Society of Japan, 2004, 73, 319-322.	1.6	76
13	Exact Result of Ground-State Entropy for Ising Pyrochlore Magnets under a Magnetic Field along [111] Axis. Journal of the Physical Society of Japan, 2002, 71, 2365-2368.	1.6	75
14	Novel Charge Order and Superconductivity in Two-Dimensional Frustrated Lattice at Quarter Filling. Journal of the Physical Society of Japan, 2006, 75, 063702.	1.6	72
15	Nature of Spin Excitations in Two-Dimensional Mott Insulators: Undoped Cuprates and Other Materials. Physical Review Letters, 2001, 86, 1626-1629.	7.8	70
16	Superconductivity and Antiferromagnetism in an Extended Gutzwiller Approximation fort–JModel: Effect of Double-Occupancy Exclusion. Journal of the Physical Society of Japan, 2003, 72, 374-391.	1.6	67
17	Low-Energy Effective Hamiltonian and the Surface States of Ca ₃ PbO. Journal of the Physical Society of Japan, 2012, 81, 064701.	1.6	64
18	Multi-orbital Analysis on the Superconductivity in NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2005, 74, 430-444.	1.6	60

#	Article	IF	Citations
19	Aspects of the Verwey transition in magnetite. Physical Review B, 2002, 65, .	3.2	56
20	Local magnetic moments around a nonmagnetic impurity in the two-dimensional t-J model. Physical Review B, 2001, 64, .	3.2	53
21	Mean-Field Study of Charge Order with Long Periodicity in Î,-(BEDT-TTF)2X. Journal of the Physical Society of Japan, 2006, 75, 014710.	1.6	53
22	Coexistence of Charge Order and Spin–Peierls Lattice Distortion in One-Dimensional Organic Conductors. Journal of the Physical Society of Japan, 2003, 72, 225-228.	1.6	52
23	Ferromagnetic Ising Spin Chains Emerging from the Spin Ice under Magnetic Field. Journal of the Physical Society of Japan, 2003, 72, 3045-3048.	1.6	51
24	Charge-Fluctuation-Induced Superconducting State in Two-Dimensional Quarter-Filled Electron Systems. Journal of the Physical Society of Japan, 2004, 73, 1115-1118.	1.6	48
25	Possibility of Gapless Spin Liquid State by One-Dimensionalization. Journal of the Physical Society of Japan, 2007, 76, 053705.	1.6	45
26	Interband Contributions from the Magnetic Field on Hall Effects for Dirac Electrons in Bismuth. Physical Review Letters, 2009, 102, 066601.	7.8	44
27	Electronic states around a vortex core in high-Tcsuperconductors based on thet-Jmodel. Physical Review B, 2003, 68, .	3.2	40
28	Variational Monte Carlo Studies of Pairing Symmetry for thet–JModel on a Triangular Lattice. Journal of the Physical Society of Japan, 2004, 73, 3404-3412.	1.6	40
29	Single-Impurity Problem in Iron-Pnictide Superconductors. Journal of the Physical Society of Japan, 2010, 79, 083704.	1.6	40
30	Superconductivity due to Charge Fluctuation in Î,-Type Organic Conductors. Journal of the Physical Society of Japan, 2004, 73, 2053-2056.	1.6	39
31	Spin-Hall Effect and Diamagnetism of Dirac Electrons. Journal of the Physical Society of Japan, 2012, 81, 093704.	1.6	36
32	Charge Order and Superconductivity in Two-Dimensional Triangular Lattice atn=2/3. Journal of the Physical Society of Japan, 2005, 74, 2901-2904.	1.6	35
33	Orbital Magnetism of Bloch Electrons I. General Formula. Journal of the Physical Society of Japan, 2015, 84, 124708.	1.6	35
34	Longitudinal conductivity of massless fermions with tilted Dirac cone in magnetic field. Physical Review B, 2015, 91, .	3.2	33
35	Effect of Phonon Drag on Seebeck Coefficient Based on Linear Response Theory: Application to FeSb ₂ . Journal of the Physical Society of Japan, 2019, 88, 074601.	1.6	33
36	Theory of Defect-Induced Kondo Effect in Graphene: Numerical Renormalization Group Study. Journal of the Physical Society of Japan, 2012, 81, 063709.	1.6	32

#	Article	IF	Citations
37	Ferromagnetic and Triplet-Pairing Instabilities Controlled by Trigonal Distortion of CoO6 Octahedra in NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2005, 74, 1670-1673.	1.6	31
38	Anomalous Temperature Behavior of the Chiral Spin Helix in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>CrNb</mml:mi></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow><td>mmt:snn>3 ub><td>3< mrow></td></td></mml:math>	mm t:s nn>3 ub> <td>3< mrow></td>	3< mrow>
39	Thin Lamellae. Physical Review Letters, 2019, 122, 017204. Semimetallicity of free-standing hydrogenated monolayer boron from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MgB</mml:mi><mml:mn>2<td></td><td></td></mml:mn></mml:msub></mml:math>		
40	Precise Control of Band Filling in NaxCoO2. Journal of the Physical Society of Japan, 2007, 76, 063705.	1.6	28
41	atoms in superconducting Na(Fe <mml:math)="" 1<="" etqq1="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.784314 3.2</td><td>rgBT /Overloo 25</td></mml:math>	0.784314 3.2	rgBT /Overloo 25
42	Range of Validity of Sommerfeld–Bethe Relation Associated with Seebeck Coefficient and Phonon Drag Contribution. Journal of the Physical Society of Japan, 2019, 88, 074703.	1.6	25
43	Deformation of Electronic Structures Due to CoO6 Distortion and Phase Diagrams of NaxCoO2Â-yH2O. Journal of the Physical Society of Japan, 2006, 75, 113703.	1.6	23
44	Effect of Doublon–Holon Binding on Mott Transition–Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models. Journal of the Physical Society of Japan, 2011, 80, 084607.	1.6	23
45	Brownian-Like Motion of a One-Dimensional φ4Kink and Fluctuation-Dissipation Theorem. Journal of the Physical Society of Japan, 1986, 55, 1252-1265.	1.6	22
46	Effect of Tilting on the In-Plane Conductivity of Dirac Electrons in Organic Conductor. Journal of the Physical Society of Japan, 2014, 83, 023701.	1.6	22
47	Correlation Effects on Charge Order and Zero-Gap State in the Organic Conductor α-(BEDT-TTF) ₂ 1 ₃ . Journal of the Physical Society of Japan, 2016, 85, 104706.	1.6	22
48	Quasiparticles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight. Journal of the Physical Society of Japan, 1994, 63, 3923-3926.	1.6	21
49	Ferromagnetism on the Frustrated Lattices. Journal of the Physical Society of Japan, 2003, 72, 2437-2440.	1.6	21
50	Nuclear magnetic relaxation and Knight shift due to orbital interaction in Dirac electron systems. Journal of Physics and Chemistry of Solids, 2019, 128, 138-143.	4.0	21
51	Brownian Motion of a Soliton in trans-Polyacetylene. I. Random Walk Mechanism. Journal of the Physical Society of Japan, 1986, 55, 2305-2314.	1.6	21
52	Charge Fluctuations in Geometrically Frustrated Charge Ordering System. Journal of the Physical Society of Japan, 2006, 75, 114707.	1.6	19
53	Spin-Polarization in Magneto-Optical Conductivity of Dirac Electrons. Journal of the Physical Society of Japan, 2012, 81, 013704.	1.6	19
54	Thermoelectric Transport Coefficients for Massless Dirac Electrons in Quantum Limit. Journal of the Physical Society of Japan, 2013, 82, 063712.	1.6	19

#	Article	IF	Citations
55	Staggered Flux State in Two-Dimensional Hubbard Models. Journal of the Physical Society of Japan, 2016, 85, 124707.	1.6	19
56	Topological Dirac nodal loops in nonsymmorphic hydrogenated monolayer boron. Physical Review B, 2020, 101, .	3.2	19
57	Role of Spin–Orbit Coupling on the Spin Triplet Pairing in NaxCoO2·yH2O: I.d-Vector under Zero Magnetic Field. Journal of the Physical Society of Japan, 2005, 74, 2568-2578.	1.6	18
58	Theory of huge thermoelectric effect based on a magnon drag mechanism: Application to thin-film Heusler alloy. Physical Review B, 2021, 104, .	3.2	18
59	Viscosity of a Kink in the One-Dimensional φ4System. Journal of the Physical Society of Japan, 1985, 54, 3425-3446.	1.6	17
60	CoO2-Layer-Thickness Dependence of Magnetic Properties and Possible Two Different Superconducting States in NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2007, 76, 013704.	1.6	17
61	Spin-Hall Effect and Diamagnetism of Anisotropic Dirac Electrons in Solids. Journal of the Physical Society of Japan, 2014, 83, 074702.	1.6	17
62	Energy Landscape of Charge Excitations in the Boundary Region between Dimer–Mott and Charge Ordered States in Molecular Solids. Journal of the Physical Society of Japan, 2017, 86, 123706.	1.6	16
63	Formation of Non-Unitary State near the Upper-Critical Field of Sr2RuO4. Journal of the Physical Society of Japan, 2005, 74, 2905-2908.	1.6	15
64	Kinetic Energy, Condensation Energy, Optical Sum Rule and Pairing Mechanism in High-TcCuprates. Journal of the Physical Society of Japan, 2005, 74, 1534-1543.	1.6	15
65	Giant orbital diamagnetism of three-dimensional Dirac electrons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:rantiperovskite. .<="" 103,="" 2021,="" b,="" physical="" review="" td=""><td>ກກ<i>າ</i>82/mn</td><td>ก!:กบธ></td></mml:rantiperovskite.></mml:msub></mml:mrow></mml:math>	ກກ <i>າ</i> 82/mn	ก !:กบธ >
66	Fermi-Surface Reconstruction in the Periodic Anderson Model. Journal of the Physical Society of Japan, 2009, 78, 024715.	1.6	14
67	Dynamical Conductivity of Dirac Electrons in Organic Conductors. Journal of the Physical Society of Japan, 2014, 83, 094705.	1.6	14
68	Orbital Magnetism of Bloch Electrons: III. Application to Graphene. Journal of the Physical Society of Japan, 2016, 85, 104708.	1.6	14
69	Effects of Charge Ordering on the Spin Degrees of Freedom in One-Dimensional Extended Hubbard Model. Journal of the Physical Society of Japan, 2005, 74, 3283-3287.	1.6	13
70	Orbital Magnetism of Bloch Electrons: II. Application to Single-Band Models and Corrections to Landau–Peierls Susceptibility. Journal of the Physical Society of Japan, 2016, 85, 064709.	1.6	13
71	Large Diamagnetism and Electromagnetic Duality in Two-Dimensional Dirac Electron System. Physical Review Letters, 2022, 128, 027201.	7.8	13
72	Orbital-Selective Superconductivity and the Effect of Lattice Distortion in Iron-Based Superconductors. Journal of the Physical Society of Japan, 2011, 80, 074704.	1.6	12

#	Article	IF	Citations
73	Theory of Orbital Susceptibility in the Tight-Binding Model: Corrections to the Peierls Phase. Journal of the Physical Society of Japan, 2016, 85, 074709.	1.6	12
74	Nuclear Spin Relaxation Time Due to the Orbital Currents in Dirac Electron Systems. Journal of the Physical Society of Japan, 2017, 86, 063705.	1.6	12
75	Role of Spin–Orbit Coupling on the Spin Triplet Pairing in NaxCoO2·yH2O II: Multiple Phase Diagram under the Magnetic Field. Journal of the Physical Society of Japan, 2005, 74, 3351-3364.	1.6	12
76	A Poor Man's Derivation of Quantum Compass–Heisenberg Interaction: Superexchange Interaction in <i>J</i> à€" <i>J</i> Coupling Scheme. Journal of the Physical Society of Japan, 2014, 83, 093701.	1.6	11
77	Theory of Magnetization in Bloch Electron Systems. Journal of the Physical Society of Japan, 2017, 86, 044713.	1.6	11
78	Theory of Spin Seebeck Effects in a Quantum Wire. Journal of the Physical Society of Japan, 2017, 86, 094703.	1.6	11
79	Specific Heat and Superfluid Density for Possible Two Different Superconducting States in NaxCoO2·yH2O. Journal of the Physical Society of Japan, 2007, 76, 023702.	1.6	10
80	Solitons in the Crossover between Band Insulator and Mott Insulator: Application to TTF-Chloranil under Pressure. Journal of the Physical Society of Japan, 2016, 85, 023702.	1.6	10
81	Development of Superconducting Correlation at Low Temperatures in the Two-dimensionalt–JModel. Journal of the Physical Society of Japan, 2005, 74, 1390-1393.	1.6	9
82	Phase Diagram of the Triangular t–J Model with Multiple Spin Exchange in the Doped-Mott Region. Journal of the Physical Society of Japan, 2009, 78, 013601.	1.6	9
83	Meissner Effect of Dirac Electrons in Superconducting State Due to Inter-Band Effect. Journal of the Physical Society of Japan, 2015, 84, 084704.	1.6	9
84	Magnetic Chirality Induced from Ruderman–Kittel–Kasuya–Yosida Interaction at an Interface of a Ferromagnet/Heavy Metal Heterostructure. Journal of the Physical Society of Japan, 2016, 85, 114701.	1.6	9
85	Theory of Orbital Susceptibility on Excitonic Insulator. Journal of the Physical Society of Japan, 2016, 85, 093701.	1.6	9
86	Universal quantization of the magnetic susceptibility jump at a topological phase transition. Physical Review Research, 2021, 3, .	3.6	9
87	Soliton-Phonon Interactions in trans-Polyacetylene. Journal of the Physical Society of Japan, 1986, 55, 2296-2304.	1.6	8
88	Quantized Conductance of One-Dimensional Doped Mott Insulator. Journal of the Physical Society of Japan, 1997, 66, 3363-3366.	1.6	8
89	Role of Velocity Field and Principal Axis of Tilted Dirac Cones in Effective Hamiltonian of Non-Coplanar Nodal Loop. Journal of the Physical Society of Japan, 2019, 88, 124704.	1.6	8
90	Increase of Superconducting Correlation due to Dimensionality Change in Quasi-One-Dimensional Conductors. Journal of the Physical Society of Japan, 2007, 76, 093701.	1.6	7

#	Article	IF	CITATIONS
91	Floquet Theory of Photoinduced Topological Phase Transitions in the Organic Salt $\langle i \rangle l \pm \langle j \rangle - \langle BEDT-TTF \rangle \langle sub \rangle 2 \langle j sub \rangle 1 \langle sub \rangle 3 \langle j sub \rangle 1 \langle sub \rangle $	1.6	7
92	Momentum Transfer between a Kink and a Phonon in the One-Dimensional φ4System. Journal of the Physical Society of Japan, 1984, 53, 3855-3870.	1.6	7
93	Spin Hall effect driven by the spin magnetic moment current in Dirac materials. Physical Review B, 2022, 105, .	3.2	7
94	Quantum Monte Carlo Study of the Quasi-One-Dimensional Superconductivity. Journal of the Physical Society of Japan, 2009, 78, 034722.	1.6	6
95	Lorentz Covariance of Dirac Electrons in Solids: Dielectric and Diamagnetic Properties. Journal of the Physical Society of Japan, 2017, 86, 083702.	1.6	5
96	Role of acoustic phonons in exotic conductivity of two-dimensional Dirac electrons. Physical Review B, 2018, 98, .	3.2	5
97	Microscopic theory of magnetoconductivity at low magnetic fields in terms of Berry curvature and orbital magnetic moment. Physical Review Research, 2021, 3, .	3.6	5
98	Characterization of two-dimensional fermionic insulating states. Physical Review B, 2006, 74, .	3.2	4
99	Tunable Spin Dynamics in Chiral Soliton Lattice. Journal of the Physical Society of Japan, 2017, 86, 124701.	1.6	4
100	New Magnetic Phases in the Chiral Magnet CsCuCl ₃ under High Pressures. Journal of the Physical Society of Japan, 2018, 87, 075001.	1.6	4
101	Electric Transport of Nodal Line Semimetals in Single-Component Molecular Conductors. Crystals, 2020, 10, 862.	2.2	4
102	Anomalous Conductivity of Two-Dimensional Dirac Electrons in Organic Conductor under Pressure. Journal of the Physical Society of Japan, 2021, 90, 044709.	1.6	4
103	Anomalous Spin Transport Properties of Gapped Dirac Electrons with Tilting. Journal of the Physical Society of Japan, 2022, 91, .	1.6	4
104	Seebeck Effect of Dirac Electrons. Journal of the Physical Society of Japan, 2022, 91, .	1.6	4
105	Midgap States in Disordered Spin-Peierls Systems. Journal of the Physical Society of Japan, 2002, 71, 721-724. Thermodynamic properties of the Heisenberg model on a triangular lattice with two exchange	1.6	3
106	couplings: Application to two-dimensional solid <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mmultiscripts><mml:mtext>H</mml:mtext><mml:mprescripts></mml:mprescripts><mml:none< td=""><td>3.2</td><td>3</td></mml:none<></mml:mmultiscripts></mml:mrow></mml:math>	3.2	3
107	/> <mml:mn>3</mml:mn> <mml:mtext>e</mml:mtext> adsorbed Theory of Mechanism of π–dInteraction in Iron–Phthalocyanine. Journal of the Physical Society of Japan, 2012, 81, 104705.	1.6	3
108	Characteristic singular behaviors of nodal-line materials emerging in orbital magnetic susceptibility and Hall conductivity. Physical Review B, 2021, 104, .	3.2	3

#	ARTICLE Predicted photoinduced pair annihilation of emergent magnetic charges in the organic salt	IF	CITATIONS
109	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>â^²I<mml:mn>3</mml:mn></mml:mtext></mml:mrow></mml:math></pre>	l:matæxt><	:m & nl:msub>
110	Theory of thermal conductivity of excitonic insulators. Physical Review B, 2021, 104, .	3.2	3
111	Non-Tomonaga-Luttinger-Liquid Behavior of the Ground State of Model One-Dimensional Electron Systems. Journal of the Physical Society of Japan, 1993, 62, 2990-2993.	1.6	2
112	Mean-Field Analysis of Electric Field Effect on Charge Orders in Organic Conductors. Journal of the Physical Society of Japan, 2010, 79, 023705.	1.6	2
113	Effect of Diagonal Hopping on Staggered Flux State in Square-Lattice Hubbard model. , 2014, , .		2
114	Superconductivity and Non-Fermi-Liquid Metal in Carrier-Doped Triangular Hubbard Model. , 2014, , .		2
115	Dzyaloshinskii–Moriya Interaction between Multipolar Moments in 5d1 Systems. Journal of the Physical Society of Japan, 2020, 89, 074702.	1.6	2
116	Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly. Journal of the Physical Society of Japan, 2016, 85, 064712.	1.6	2
117	Nodal-line semimetal HMTSF-TCNQ: Anomalous orbital diamagnetism and charge density wave. Physical Review B, 2021, 104, .	3.2	2
118	Effect of paramagnon drag on thermoelectric transport properties: Linear response theory. Physical Review B, 2022, 105, .	3.2	2
119	Thermoelectric transport of type-I, II, and III massless Dirac fermions in a two-dimensional lattice model. Physical Review B, 2022, 105, .	3.2	2
120	Electronic States Around Vortex Cores in the t-J Model. Journal of Low Temperature Physics, 2003, 131, 209-216.	1.4	1
121	Long-Range Coulomb Interaction Effects on the Surface Dirac Electron System of a Three-Dimensional Topological Insulator. Journal of the Physical Society of Japan, 2015, 84, 034710.	1.6	1
122	Numerical Study of Current-Induced Domain-Wall Dynamics: Crossover from Spin Transfer to Momentum Transfer. Journal of the Physical Society of Japan, 2009, 78, 033703.	1.6	1
123	Disorder Operator In 2D Insulating States. AIP Conference Proceedings, 2006, , .	0.4	0
124	HALL EFFECT AND DIAMAGNETISM OF BISMUTH., 2009,,.		0
125	Magnetic instability in Ca2â^'x Sr x RuO4 with x = 0.5. Journal of the Korean Physical Society, 2013, 63, 390-393.	0.7	0
126	Theory of phason drag effect on thermoelectricity. Physical Review B, 2020, 102, .	3.2	0

#	Article	IF	CITATIONS
127	Metallization of Mott Insulators through Percolation in Partially Filled Impurity Hubbard Model. , 2020, , .		0
128	A Novel Method to Observe Topological Nature Using Nonlinear Thermoelectricity. JPSJ News and Comments, 2021, 18, 08.	0.1	0
129	Looking into the Inside of Anomalous Vortex Cores of High-Temperature Superconductors. JPSJ News and Comments, 2005, 2, 08.	0.1	O
130	Disentangling Orbital Magnetic Susceptibility with Wannier Functions. Journal of the Physical Society of Japan, 2021, 90, .	1.6	0