
Dimitris Thanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9234683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The TÎ [°] p63/BCL2 axis represents a novel mechanism of clinical aggressiveness in chronic lymphocytic leukemia. Blood Advances, 2022, 6, 2646-2656.	2.5	1
2	From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers, 2021, 13, 2024.	1.7	5
3	Identification of a dynamic gene regulatory network required for pluripotency factorâ€induced reprogramming of mouse fibroblasts and hepatocytes. EMBO Journal, 2021, 40, e102236.	3.5	11
4	Effects of cryopreservation on antiviral responses of primary airway epithelial cells. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1486-1489.	2.7	0
5	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
6	Evaluation of Serum/Urine Genomic and Metabolomic Profiles to Improve the Adherence to Sildenafil Therapy in Patients with Erectile Dysfunction. Frontiers in Pharmacology, 2020, 11, 602369.	1.6	4
7	Transcriptomics in tissue glucocorticoid sensitivity. European Journal of Clinical Investigation, 2019, 49, e13129.	1.7	5
8	K-Nets: Clustering through nearest neighbors networks. Pattern Recognition, 2019, 88, 470-481.	5.1	9
9	Serum miRNA-based distinct clusters define three groups of breast cancer patients with different clinicopathological and immune characteristics. Cancer Immunology, Immunotherapy, 2019, 68, 57-70.	2.0	15
10	The Histone Variant MacroH2A Blocks Cellular Reprogramming by Inhibiting Mesenchymal-to-Epithelial Transition. Molecular and Cellular Biology, 2018, 38, .	1.1	13
11	Perturbation of transcriptome in non-neoplastic salivary gland epithelial cell lines derived from patients with primary Sj¶gren's syndrome. Data in Brief, 2018, 17, 194-199.	0.5	9
12	Impaired anti-inflammatory activity of PPARγ in the salivary epithelia of Sjögren's syndrome patients imposed by intrinsic NF-κB activation. Journal of Autoimmunity, 2018, 86, 62-74.	3.0	25
13	Stochastic phenotype switching leads to intratumor heterogeneity in human liver cancer. Hepatology, 2018, 68, 933-948.	3.6	17
14	Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to <scp>GSM</scp> 1800 <scp>MH</scp> z mobile phone radiation: An exploratory study. Brain and Behavior, 2018, 8, e01001.	1.0	26
15	Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of <i>Drosophila melanogaster</i> . Fly, 2017, 11, 75-95.	0.9	11
16	The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions. Nucleic Acids Research, 2017, 45, 142-154.	6.5	19
17	Transcription Factor Ets-2 Acts as a Preinduction Repressor of Interleukin-2 (IL-2) Transcription in Naive T Helper Lymphocytes. Journal of Biological Chemistry, 2016, 291, 26707-26721.	1.6	16
18	Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nature Cell Biology, 2016, 18, 777-789.	4.6	244

DIMITRIS THANOS

#	Article	IF	CITATIONS
19	A method for generating highly multiplexed ChIP-seq libraries. BMC Research Notes, 2014, 7, 312.	0.6	29
20	Stochastic Responses Are Not Left to Pure "Chance― Cell, 2013, 155, 499-502.	13.5	4
21	Genomic Analysis Reveals a Novel Nuclear Factor-κB (NF-κB)-binding Site in Alu-repetitive Elements. Journal of Biological Chemistry, 2011, 286, 38768-38782.	1.6	55
22	Transcription factors mediate long-range enhancer–promoter interactions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20222-20227.	3.3	166
23	Time's up: Bursting out of Transcription. Cell, 2009, 138, 430-432.	13.5	4
24	S-glutathionylation of IRF3 regulates IRF3–CBP interaction and activation of the IFNβ pathway. EMBO Journal, 2008, 27, 865-875.	3.5	64
25	Linking Differential Chromatin Loops to Transcriptional Decisions. Molecular Cell, 2008, 29, 154-156.	4.5	4
26	Virus Infection Induces NF-κB-Dependent Interchromosomal Associations Mediating Monoallelic IFN-β Gene Expression. Cell, 2008, 134, 85-96.	13.5	223
27	A dimer-specific function of the transcription factor NFATp. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19637-19642.	3.3	35
28	Bypassing the Requirements for Epigenetic Modifications in Gene Transcription by Increasing Enhancer Strength. Molecular and Cellular Biology, 2008, 28, 926-938.	1.1	24
29	Post-induction, Stimulus-specific Regulation of Tumor Necrosis Factor mRNA Expression. Journal of Biological Chemistry, 2007, 282, 11629-11638.	1.6	30
30	Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO Journal, 2006, 25, 4843-4853.	3.5	87
31	CIITA regulates transcription onset viaSer5-phosphorylation of RNA Pol II. EMBO Journal, 2003, 22, 5125-5136.	3.5	75
32	The κB DNA Sequence from the HIV Long Terminal Repeat Functions as an Allosteric Regulator of HIV Transcription. Journal of Biological Chemistry, 2002, 277, 24701-24708.	1.6	81
33	Modifying Gene Expression Programs by Altering Core Promoter Chromatin Architecture. Cell, 2002, 110, 261-271.	13.5	168
34	Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure. Cell, 2002, 111, 483-493.	13.5	466
35	Deciphering the Transcriptional Histone Acetylation Code for a Human Gene. Cell, 2002, 111, 381-392.	13.5	581
	On an in a Character Malandar Call 2002 0 200 211		

36 Opening Chromatin. Molecular Cell, 2002, 9, 209-211.

4.5 25

DIMITRIS THANOS

#	Article	IF	CITATIONS
37	Structure of NF-κB p50/p65 Heterodimer Bound to the PRDII DNA Element from the Interferon-β Promoter. Structure, 2002, 10, 383-391.	1.6	69
38	Coordination of a Transcriptional Switch by HMGI(Y) Acetylation. Science, 2001, 293, 1133-1136.	6.0	208
39	Enhanceosomes. Current Opinion in Genetics and Development, 2001, 11, 205-208.	1.5	364
40	Nucleosome Sliding via TBP DNA Binding In Vivo. Cell, 2001, 106, 685-696.	13.5	189
41	The Architectural Transcription Factor High Mobility Group I(Y) Participates in Photoreceptor-Specific Gene Expression. Journal of Neuroscience, 2000, 20, 7317-7324.	1.7	40
42	Stimulus-Specific Assembly of Enhancer Complexes on the Tumor Necrosis Factor Alpha Gene Promoter. Molecular and Cellular Biology, 2000, 20, 2239-2247.	1.1	151
43	Gene Repression by Coactivator Repulsion. Molecular Cell, 2000, 6, 931-937.	4.5	69
44	Ordered Recruitment of Chromatin Modifying and General Transcription Factors to the IFN-β Promoter. Cell, 2000, 103, 667-678.	13.5	683
45	Transcriptional Activation by NF-κB Requires Multiple Coactivators. Molecular and Cellular Biology, 1999, 19, 6367-6378.	1.1	413
46	Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature, 1998, 391, 103-106.	13.7	366
47	Recruitment of CBP/p300 by the IFNÎ ² Enhanceosome Is Required for Synergistic Activation of Transcription. Molecular Cell, 1998, 1, 277-287.	4.5	402
48	Acetylation of HMG I(Y) by CBP Turns off IFNÎ ² Expression by Disrupting the Enhanceosome. Molecular Cell, 1998, 2, 457-467.	4.5	316
49	Nuclear Integration of Glucocorticoid Receptor and Nuclear Factor-κB Signaling by CREB-binding Protein and Steroid Receptor Coactivator-1. Journal of Biological Chemistry, 1998, 273, 29291-29294.	1.6	274
50	High mobility group I/Y protein functions as a specific cofactor for Oct-2A: mapping of interaction domains. Journal of Leukocyte Biology, 1998, 64, 681-691.	1.5	18
51	An NF-κB-Like Transcription Factor in Axoplasm is Rapidly Inactivated after Nerve Injury inAplysia. Journal of Neuroscience, 1997, 17, 4915-4920.	1.7	34
52	In vitro assembly of enhancer complexes. Methods in Enzymology, 1996, 274, 162-173.	0.4	11
53	Mechanisms of Transcriptional Synergism of Eukaryotic Genes. Hypertension, 1996, 27, 1025-1029.	1.3	9
54	Structure of the NF-κB transcription factor: a holistic interaction with DNA. Structure, 1995, 3, 135-141.	1.6	26

DIMITRIS THANOS

#	Article	IF	CITATIONS
55	Virus induction of human IFNÎ ² gene expression requires the assembly of an enhanceosome. Cell, 1995, 83, 1091-1100.	13.5	953
56	Reversal of intrinsic DNA bends in the IFNÎ ² gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell, 1995, 83, 1101-1111.	13.5	289
57	NF-κB: A lesson in family values. Cell, 1995, 80, 529-532.	13.5	1,273
58	An HMG-like protein that can switch a transcriptional activator to a repressor. Nature, 1994, 371, 175-179.	13.7	229
59	Mechanisms of transcriptional synergism between distinct virus-inducible enhancer elements. Cell, 1993, 74, 887-898.	13.5	463
60	The MHC class II E-β promoter: a complex arrangement of positive and negative elements determines B cell and interferon-δ (IFN-Î) regulated expression. Nucleic Acids Research, 1993, 21, 6010-6019.	6.5	7
61	The High Mobility Group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell, 1992, 71, 777-789.	13.5	651
62	Triethyllead-induced inhibition of proliferation of normal human lymphocytes through decreased expression of the Tac chain of interleukin 2 receptor. International Journal of Immunopharmacology, 1990, 12, 349-358.	1.1	2
63	Isolation and identification of restriction endonuclease BseAI. Nucleic Acids Research, 1989, 17, 8881-8881.	6.5	2
64	Induction of class II major histocompatibility complex antigens in murine placenta by 5-azacytidine and interferon-Î ³ involves different cell populations. European Journal of Immunology, 1989, 19, 2341-2348.	1.6	31
65	Molecular analysis of the mouse class II gene, E ? q. Immunogenetics, 1988, 27, 426-430.	1.2	5